scholarly journals Decolorization of industrial wastewater using electrochemical peroxidation process

Author(s):  
Elin Marlina ◽  
Purwanto Purwanto ◽  
Sudarno Sudarno

In this study, decolorization of wastewater samples taken from the paper industry is investigated using electrochemical peroxidation process. The electrochemical peroxidation process is a part of electrochemical advanced oxidation processes, which is based on the Fenton’s chemical reaction, provided by addition of external H2O2 into reaction cell. In this study, iron is used as anode and graphite as cathode put at the fixed distance of 30 mm in a glass reaction cell. The cell was filled with the solution containing wastewater and sodium chloride as the supporting electrolyte. Factors of the process such as pH, current intensity, hydrogen peroxide concentration, and time of treatment were studied. The results illustrate that all these parameters affect efficiencies of dye removal and chemical oxygen demand (COD) reducing. The maximal removal of wastewater contaminants was achieved under acid (pH 3) condition, with the applied current of 1 A, and hydrogen peroxide concentration of 0.033 M. At these conditions, decolorization process efficiency reached 100 and 83 % of COD removal after 40 minutes of wastewater sample treatment. In addition, the electrical energy consumption for wastewater treatment by electrochemical peroxidation is calculated, showing increase as the current intensity of treatment process was increased. The obtained results suggest that electrochemical peroxidation process can be used for removing dye compounds and chemical oxygen demand (COD) from industrial wastewaters with high removal efficiency.

Author(s):  
Siti Nor Farhana Zakaria

Landfill leachate is a hazardous pollutant generated from a landfill site. Discharge of landfill leachate has caused a major contamination to the environment and detrimental to human health. This chapter introduces an alternative method to treat recalcitrant pollutant in leachate by using ozonation with catalyst. The production of hydroxyl radical in ozonation was not enough to oxidize complex molecular structure in the leachate. Theoretically, the addition of catalyst enhances the capacity of radical and accelerates the chemical reaction. The effectiveness of ozonation with Fenton (O3/Fenton), hydrogen peroxide (O3/H2O2), and zirconium tetrachloride (O3/ZrCl4) in removing pollutant such as chemical oxygen demand (COD), color, and improvement of biodegradability by using this process were also discussed in this chapter. Comparison in term of treatment cost and benefits of the application of chemical as catalyst are briefly elaborated at the end of this chapter.


2012 ◽  
Vol 66 (1) ◽  
pp. 217-223 ◽  
Author(s):  
Mouhamed el khames Saad ◽  
Younes Moussaoui ◽  
Asma Zaghbani ◽  
Imen Mosrati ◽  
Elimame Elaloui ◽  
...  

The present paper presents the main results of the biodegradation study of paper industry wastewater through physico-chemical treatment. Indeed, around 60% of chemical oxygen demand (COD) removal can be achieved by electroflocculation treatment. Furthermore, a removal efficiency of the COD of almost 91% has been obtained by biological treatment, with activated amount of sludge for 24 h of culture. Concerning the physico-chemical pre-treatment of the untreated, filtered and electroflocculated rejection effluents, it has been investigated through the degradation curve of COD studies.


2015 ◽  
Vol 73 (5) ◽  
pp. 1155-1165 ◽  
Author(s):  
J. D. García-Espinoza ◽  
P. Gortáres-Moroyoqui ◽  
M. T. Orta-Ledesma ◽  
P. Drogui ◽  
P. Mijaylova-Nacheva

Carbamazepine (CBZ) is one of the most frequently detected organic compounds in the aquatic environment. Due to its bio-persistence and toxicity for humans and the environment its removal has become an important issue. The performance of the electrochemical oxidation process and in situ production of reactive oxygen species (ROS), such as O3 and H2O2, for CBZ removal have been studied using Ti/PbO2 cylindrical mesh anode in the presence of Na2SO4 as supporting electrolyte in a batch electrochemical reactor. In this integrated process, direct oxidation at anode and indirect oxidation by in situ electrogenerated ROS can occur simultaneously. The effect of several factors such as electrolysis time, current intensity, initial pH and oxygen flux was investigated by means of an experimental design methodology, using a 24 factorial matrix. CBZ removal of 83.93% was obtained and the most influential parameters turned out to be electrolysis time, current intensity and oxygen flux. Later, the optimal experimental values for CBZ degradation were obtained by means of a central composite design. The best operating conditions, analyzed by Design Expert® software, are the following: 110 min of electrolysis at 3.0 A, pH = 7.05 and 2.8 L O2/min. Under these optimal conditions, the model prediction (82.44%) fits very well with the experimental response (83.90 ± 0.8%). Furthermore, chemical oxygen demand decrease was quantified. Our results illustrated significant removal efficiency for the CBZ in optimized condition with second order kinetic reaction.


2010 ◽  
Vol 61 (10) ◽  
pp. 2557-2561 ◽  
Author(s):  
M. K. Vilve ◽  
M. E. T. Sillanpää

This paper presents a summary of degrading organic compounds of nuclear laundry water by ozonation in different conditions of pH, hydrogen peroxide and ultraviolet radiation. The degradation of organic compounds was analysed by chemical oxygen demand (COD), total organic carbon (TOC) and biochemical oxygen demand (BOD). The optimal degradation conditions were at pH 7 with ozone, UV radiation and hydrogen peroxide addition. The transfer of ozone increased significantly, thus resulting in decreased treatment time compared to ozone treatment alone. The reductions of COD, TOC and BOD were 46%, 32% and 70%, respectively.


e-xacta ◽  
2016 ◽  
Vol 9 (2) ◽  
Author(s):  
Denis Rafael de Souza Lima ◽  
Isabela Luiza Alves de Almeida ◽  
Vanderlei Inácio de Paula

<p>Neste trabalho avaliou-se a aplicação do processo oxidativo avançado (POA) de foto-peroxidação (UV/H<sub>2</sub>O<sub>2</sub>) na degradação do azocorante têxtil comercial Azul Reativo 5G. Foram preparadas soluções sintéticas contendo o corante e tratadas através do respectivo POA, sendo a eficiência do tratamento avaliada através dos seguintes parâmetros: descoloração, redução da demanda química de oxigênio (DQO) e ecotoxicidade com sementes de Lactuca sativa. Após 30 minutos de tratamento em condições otimizadas na presença de peróxido de hidrogênio e radiação ultravioleta, foi observada descoloração na ordem de 91,8% sem redução significativa da DQO (1,8%), além de diminuição da ecotoxicidade da solução, indicando a viabilidade da aplicação do processo UV/H<sub>2</sub>O<sub>2</sub> para tratamento de resíduos líquidos contendo este azocorante.</p><p>ABSTRACT</p><p>In the present paper was evaluated the application of advanced oxidation process (AOP) photo-peroxidation (UV/H<sub>2</sub>O<sub>2</sub>) applied to degradation of the commercial textile azo dye Reactive Blue 5G. Synthetic solutions were prepared containing the dye, treated through the respective AOP and the efficiency of the treatment evaluated by the following parameters: discoloration, reduction of chemical oxygen demand (COD) and ecotoxicity with Lactuca sativa seeds. After 30 minutes of treatment in optimized conditions in the presence of hydrogen peroxide and ultraviolet radiation, discoloration was observed in order of 91.8% without significant reduction of COD (1.8%), but decrease in the ecotoxicity of the solution, indicating feasibility of the process UV/H<sub>2</sub>O<sub>2</sub> for treating liquid wastes containing this azo dye.</p>


2015 ◽  
Vol 802 ◽  
pp. 519-524
Author(s):  
Wan Izatul Saadiah Wan Kamar ◽  
Hamidi Abdul Aziz ◽  
Siti Fatihah Ramli

Sago starch has been widely used in industrial fields, especially in food, non-food, and animal feed biotechnology. Malaysia is one of the highest local sources of sago starch. The alternative use of sago starch as a coagulant for domestic wastewater treatment was investigated in this study. The wastewater sample was collected from the Juru Regional Sewage Treatment Plant in Juru, Penang. The studied parameters include the chemical oxygen demand (COD), suspended solids, and color. Standard jar test procedures were conducted. The initial operating conditions were 200 rpm for 3 min of rapid mixing, 40 rpm for 30 min of slow mixing, and 30 min of settling. The optimum conditions included a pH of 7 and dosage of 2000 mg/L, with rapid mixing at 100 rpm for 1 min, slow mixing at 20 rpm for 30 min, and 18 min of settling. The removal rate of COD and color at these conditions was 70%. Simultaneously, 82% of SS was also removed. The results indicated that sago starch has good potential to treat domestic wastewater; the coagulant may also efficiently treat other types of wastewater.


2021 ◽  
Vol 147 (12) ◽  
pp. 04021059
Author(s):  
Mohammad Issa ◽  
Thorben Muddemann ◽  
Dennis Haupt ◽  
Ulrich Kunz ◽  
Michael Sievers

2014 ◽  
Vol 2014 ◽  
pp. 1-11 ◽  
Author(s):  
Jefferson P. Ribeiro ◽  
Juliene T. Oliveira ◽  
André G. Oliveira ◽  
Francisco W. Sousa ◽  
Eliezer F. Abdala Neto ◽  
...  

UV/H2O2system was tested on the color removal of sulfonated azo dye Reactive Red 198 (RR), which is widely used in textile process. The effects of hydrogen peroxide concentration, temperature, pH, and the in-line addition of hydrogen peroxide on high color and chemical oxygen demand (COD) removals were investigated. The kinetic of dye decolorization was also determined. The results showed that 2% H2O2decreased the process efficiency, while 1% H2O2solution led to a better performance of the system. Despite the fact that the pH increase had small effect on color removal, it affects positively COD removals. The same behavior was found for temperature increase. A high temperature resulted in a slight decrease in color removal and a sharp decrease for COD removal. In addition the H2O2in-line provided a small improvement in both color and COD removals. UV/1% H2O2treatment was the most efficient, the good performance was linked to higher amount of hydroxyl radicals formed.


2013 ◽  
Vol 180 (11-12) ◽  
pp. 1029-1036 ◽  
Author(s):  
Jeyran Akhoundzadeh ◽  
Marta Costas ◽  
Isela Lavilla ◽  
Mahmoud Chamsaz ◽  
Carlos Bendicho

Sign in / Sign up

Export Citation Format

Share Document