scholarly journals The pig as an animal model in biomedical research: A review

2018 ◽  
Vol 72 ◽  
pp. 1032-1042 ◽  
Author(s):  
Natalia Dzięgiel ◽  
Paulina Szczurek ◽  
Jacek Jura ◽  
Marek Pieszka

The advances in translational biomedical research, especially in genetic engineering, created new opportunities to trace the courses of human diseases and develop effective therapeutic methods. There remains, however, a growing demand for appropriate animal models for the precise evaluation of the efficacy and safety of new drugs or therapeutic concepts. Thus far, rodent models have been most widely used in translational research; however, since they do not perfectly reflect the human disease phenotype, transgenic pigs are increasingly being utilized as animal models. Thanks to the anatomical and physiological similarities between pigs and humans, swine are considered to be one of the most valuable animal models used in preclinical studies, including nutritional, metabolic and cardiovascular research. The resemblances involve the gastrointestinal, cardiovascular, urinary, respiratory, skeletal muscle and immune systems, as wells as body size, body composition and the omnivorous food choice. In addition, pigs are characterized by high fertility and fecundity, as well as the ease of use and low maintenance costs. Importantly, the existing efficient genetic engineering techniques enable relatively easy generation of tailored porcine models of human disease. One should be aware, however, of some physiological differences between humans and pigs to correctly interpret induced toxicological changes. The article provides an overview of current techniques for genetic modification of pigs, as well as the use of swine models in translational research exemplified by xenotransplantation, metabolic and coronary heart disease, and the gastrointestinal motility studies.

2021 ◽  
pp. 67-96
Author(s):  
Mylan Engel Jr.

In this chapter, Mylan Engel Jr. argues that animal experimentation is neither epistemically nor morally justified and should be abolished. Engel argues that the only serious attempt at justifying animal experimentation is the benefits argument, according to which animal experiments are justified because the benefits that humans receive from the experiments outweigh the costs imposed on the animal subjects. According to Engel, the benefits we allegedly receive from animal-based biomedical research are primarily epistemic, in that experimenting on animal models is supposed to provide us with knowledge of the origin and proper treatment of human disease. However, Engel argues that animal models are extremely unreliable at predicting how drugs will behave in humans, whether candidate drugs will be safe in humans, and whether candidate drugs will be effective in humans. Engel concludes that animal-based research fails to provide the epistemic, and thereby moral, benefits needed to justify its continued use.


Animals ◽  
2020 ◽  
Vol 10 (7) ◽  
pp. 1194 ◽  
Author(s):  
Francesca Pistollato ◽  
Camilla Bernasconi ◽  
Janine McCarthy ◽  
Ivana Campia ◽  
Christian Desaintes ◽  
...  

Dementia and cancer are becoming increasingly prevalent in Western countries. In the last two decades, research focused on Alzheimer’s disease (AD) and cancer, in particular, breast cancer (BC) and prostate cancer (PC), has been substantially funded both in Europe and worldwide. While scientific research outcomes have contributed to increase our understanding of the disease etiopathology, still the prevalence of these chronic degenerative conditions remains very high across the globe. By definition, no model is perfect. In particular, animal models of AD, BC, and PC have been and still are traditionally used in basic/fundamental, translational, and preclinical research to study human disease mechanisms, identify new therapeutic targets, and develop new drugs. However, animals do not adequately model some essential features of human disease; therefore, they are often unable to pave the way to the development of drugs effective in human patients. The rise of new technological tools and models in life science, and the increasing need for multidisciplinary approaches have encouraged many interdisciplinary research initiatives. With considerable funds being invested in biomedical research, it is becoming pivotal to define and apply indicators to monitor the contribution to innovation and impact of funded research. Here, we discuss some of the issues underlying translational failure in AD, BC, and PC research, and describe how indicators could be applied to retrospectively measure outputs and impact of funded biomedical research.


ILAR Journal ◽  
2018 ◽  
Vol 59 (2) ◽  
pp. 161-167
Author(s):  
Gaylen L Edwards ◽  
Michael J Azain ◽  
Andrew Parks

Abstract The use of agricultural animals in biomedical research is increasing. Their overall size and metabolic rate, organ size, longer gestation period, and other physiological similarities make them good candidates for animal models of human disease. There are a number of special considerations for use of traditional farm animals for biomedical research. Differences in physical plant infrastructure, handling equipment, training of personnel, and potential zoonoses are some of the important considerations when traditional farm animals are used in biomedical research. This article provides an overview of some of the special considerations for using traditional agricultural animals in biomedical research. With the growing need for improved translational research, it is reasonable to predict significant growth in these animal models.


2017 ◽  
Vol 01 (02) ◽  
pp. 074-082
Author(s):  
Jordan Newson ◽  
Nickolas Kinachtchouk ◽  
Kyle Schachtschneider ◽  
Regina Schwind ◽  
Lawrence Schook

AbstractAdvances in biomedical research require animal models that accurately recapitulate human disease. Without such models, progress against human diseases such as cancer is significantly hindered. Here, we present the current landscape on available and emerging hepatocellular carcinoma (HCC) animal models. HCC is the second leading cause of cancer death worldwide, with an annual death toll exceeding 745,000. Stunningly, only 15% of HCC patients are candidates for curative therapy, leading 85% of patients to seek palliative therapeutic options. The VX2 rabbit model is considered the most relevant and widely used HCC model; however, more reliable HCC models are critically needed. In general, animal models for biomedical research should (1) mimic the human disease on a molecular basis, (2) derive from a relevant cell line that lends itself to in vitro study, (3) be reliable and predictable, (4) manifest survival differences, (5) allow for accurate treatment assessment, (6) be readily imaged, and (7) occur in similar background settings as the human disease. Over the past decades, numerous small animal models have been utilized for HCC studies; however, the development of new large animal models as qualified alternatives to murine models represents a key technology to advance research into human clinical trials.


Author(s):  
Katelyn Donaldson ◽  
Ahmet Höke

There are numerous types of peripheral neuropathies and conditions that cause neuropathic pain with varying symptoms and different mechanisms of pathogenesis. Therefore, it is not surprising that many different animal models of peripheral neuropathies and neuropathic pain have been developed with varying degrees of fidelity to recapitulate the human disease. Nevertheless, these models are useful in a deconstructive manner to examine role of specific molecular pathways in pathogenesis of different types of peripheral neuropathies and test potential new drugs.


2021 ◽  
Vol 9 (5) ◽  
pp. 1062
Author(s):  
Chunye Zhang ◽  
Craig L. Franklin ◽  
Aaron C. Ericsson

The gut microbiome (GM), a complex community of bacteria, viruses, protozoa, and fungi located in the gut of humans and animals, plays significant roles in host health and disease. Animal models are widely used to investigate human diseases in biomedical research and the GM within animal models can change due to the impact of many factors, such as the vendor, husbandry, and environment. Notably, variations in GM can contribute to differences in disease model phenotypes, which can result in poor reproducibility in biomedical research. Variation in the gut microbiome can also impact the translatability of animal models. For example, standard lab mice have different pathogen exposure experiences when compared to wild or pet store mice. As humans have antigen experiences that are more similar to the latter, the use of lab mice with more simplified microbiomes may not yield optimally translatable data. Additionally, the literature describes many methods to manipulate the GM and differences between these methods can also result in differing interpretations of outcomes measures. In this review, we focus on the GM as a potential contributor to the poor reproducibility and translatability of mouse models of disease. First, we summarize the important role of GM in host disease and health through different gut–organ axes and the close association between GM and disease susceptibility through colonization resistance, immune response, and metabolic pathways. Then, we focus on the variation in the microbiome in mouse models of disease and address how this variation can potentially impact disease phenotypes and subsequently influence research reproducibility and translatability. We also discuss the variations between genetic substrains as potential factors that cause poor reproducibility via their effects on the microbiome. In addition, we discuss the utility of complex microbiomes in prospective studies and how manipulation of the GM through differing transfer methods can impact model phenotypes. Lastly, we emphasize the need to explore appropriate methods of GM characterization and manipulation.


2021 ◽  
Vol 22 (11) ◽  
pp. 6115
Author(s):  
Boris Mravec

Research on the neurobiology of cancer, which lies at the border of neuroscience and oncology, has elucidated the mechanisms and pathways that enable the nervous system to modulate processes associated with cancer initiation and progression. This research has also shown that several drugs which modulate interactions between the nervous system and the tumor micro- and macroenvironments significantly reduced the progression of cancer in animal models. Encouraging results were also provided by prospective clinical trials investigating the effect of drugs that reduce adrenergic signaling on the course of cancer in oncological patients. Moreover, it has been shown that reducing adrenergic signaling might also reduce the incidence of cancer in animal models, as well as in humans. However, even if many experimental and clinical findings have confirmed the preventive and therapeutic potential of drugs that reduce the stimulatory effect of the nervous system on processes related to cancer initiation and progression, several questions remain unanswered. Therefore, the aim of this review is to critically evaluate the efficiency of these drugs and to discuss questions that need to be answered before their introduction into conventional cancer treatment and prevention.


Animals ◽  
2021 ◽  
Vol 11 (3) ◽  
pp. 673
Author(s):  
Alexandra L. Whittaker ◽  
Yifan Liu ◽  
Timothy H. Barker

The Mouse Grimace Scale (MGS) was developed 10 years ago as a method for assessing pain through the characterisation of changes in five facial features or action units. The strength of the technique is that it is proposed to be a measure of spontaneous or non-evoked pain. The time is opportune to map all of the research into the MGS, with a particular focus on the methods used and the technique’s utility across a range of mouse models. A comprehensive scoping review of the academic literature was performed. A total of 48 articles met our inclusion criteria and were included in this review. The MGS has been employed mainly in the evaluation of acute pain, particularly in the pain and neuroscience research fields. There has, however, been use of the technique in a wide range of fields, and based on limited study it does appear to have utility for pain assessment across a spectrum of animal models. Use of the method allows the detection of pain of a longer duration, up to a month post initial insult. There has been less use of the technique using real-time methods and this is an area in need of further research.


Sign in / Sign up

Export Citation Format

Share Document