Application of meshless methods to modeling of pistol bullets

2021 ◽  
Vol 70 (2) ◽  
pp. 77-86
Author(s):  
Piotr Kędzierski ◽  
Julia Watorowska

The paper presents an analysis of applicability of two meshless methods to the modeling of pistol bullets on the example of a 9 mm Parabellum. The studies included the following methods: SPH and SPG. The results of computer simulations were confronted with ballistic test results in terms of shape-dimensional compliance of the deformed projectile. The relative error of the projectile diameter was 15 and 17% for the SPG and SPH methods, respectively. The deformation form for the SPH method deviated from the ballistic test results, while the SPG method faithfully reproduced the shape of the deformed projectile. Keywords: mechanical engineering, impact simulation, pistol bullet, SPH, SPG

1995 ◽  
Vol 23 (4) ◽  
pp. 352-362 ◽  
Author(s):  
Duncan A. Lawson

Many universities admit students to degree courses in mechanical engineering from a wide variety of backgrounds. The majority enter with a study of A level mathematics. An increasing proportion enter having previously studied for BTEC qualifications. The conventional rule of thumb which is used is that BTEC level 3 is equivalent to A level. In this paper this rule of thumb is examined by comparing the performance of A level and BTEC students in a diagnostic test, taken at the start of their course, and the results of the end-of-year examination. The results of students entering the mechanical engineering stream of degree courses at Coventry University in 1991 and 1992 are used to provide the data for this study. The diagnostic test results also show the key areas of weakness in the level of mathematical competence of many students on entry to universities.


2014 ◽  
Vol 529 ◽  
pp. 102-107
Author(s):  
Hai Bo Luo ◽  
Ying Yan ◽  
Xiang Ji Meng ◽  
Tao Tao Zhang ◽  
Zu Dian Liang

A 7.8m/s vertical drop simulate of a full composite fuselage section was conducted with energy-absorbing floor to evaluate the crashworthiness features of the fuselage section and to predict its dynamic response to dummies in future. The 1.52m diameter fuselage section consists of a high strength upper fuselage frame, one stiff structural floor and an energy-absorbing subfloor constructed of Rohacell foam blocks. The experimental data from literature [6] were analyzed and correlated with predictions from an impact simulation developed using the nonlinear explicit transient dynamic computer code MSC.Dytran. The simulated average acceleration did not exceed 13g, by contrast with experimental results, whose relative error is less than 11%. The numerical simulation results agree with experiments well.


2011 ◽  
Vol 77 (777) ◽  
pp. 834-842 ◽  
Author(s):  
Masaki TATEOKA ◽  
Haruki OBARA ◽  
Akinori KOYAMA ◽  
Kousei TURIYA ◽  
Tohru SASAKI
Keyword(s):  

2018 ◽  
Vol 178 ◽  
pp. 07008
Author(s):  
Diyan M. Dimitrov ◽  
Stoyan D. Slavov

Mechanics courses traditionally characterize with a rather low percentage of passing students. Dynamic mathematical packages like GeoGebra are widely used nowadays for teaching mathematics, but its interactive capabilities can be used for simulation of different physical phenomena. In this article few interactive applets for Static, Dynamic, Strength of Materials and Theory of Mechanisms and Machines courses, are presented. An experiment with comparison of the test results of two group of students after the exercise beam about internal forces, shows that group trained with GeoGebra applets have significantly higher mean result.


2014 ◽  
Vol 2014 ◽  
pp. 1-10 ◽  
Author(s):  
Mijin Choi ◽  
Jung-Ryul Lee ◽  
Cheol-Won Kong

Pyrotechnic devices have been employed in satellite launch vehicle missions, generally for the separation of structural subsystems such as stage and satellite separation. Expanding tubes are linear explosives enclosed by an oval steel tube and have been widely used for pyrotechnic joint separation systems. A numerical model is proposed for the prediction of the proper load of an expanding tube using a nonlinear dynamic analysis code, AUTODYN 2D and 3D. To compute a proper core load, numerical models of the open-ended steel tube and mild detonating tube encasing a high explosive were developed and compared with experimental results. 2D and 3D computational results showed good correlation with ballistic test results. The model will provide more flexibility in expanding tube design, leading to economic benefits in the overall expanding tube development procedure.


1983 ◽  
Vol 23 (03) ◽  
pp. 519-520
Author(s):  
Hubert Winston

Abstract The nature of wellbore storage is such that afterflow during a pulse test can affect the reservoir pressure performance and can lead to the calculation of erroneous performance and can lead to the calculation of erroneous values for formation transmissibility and storage. This is most likely to occur when the wells of interest are close together or when after flow persists for a long time relative to the pulse length. This article describes a technique that was developed to account for the effects of after flow at the pulsing well during pulse testing of a small production pilot. The technique is not general because it requires that a computer-generated simulation of each pulse test be made. An application of the method is given. Introduction In carrying out a pulse test, we introduce a pressure disturbance into a reservoir by alternately increasing and decreasing the flow rate at the pulsing well in a known manner. The pressure at the responding well is monitored, and, if the wells are in pressure communication, the pressure distrubance eventually will affect the pressure at the responding well. Since the form and the duration of the flow, rate disturbance are known, and since the mathematics that describe the pressure behavior of fluid-beefing reservoirs are well understood, the pulse test pressure response can be predicted. Several methods are available to calculate values for formation transmissibility and storage within a pulse-tested reservoir. Although all real reservoirs are heterogeneous, the models for deriving these techniques assume that the reservoir is ideal. When the wells of interest are far apart or when the duration of after flow is short relative to the pulse length, the effects of wellbore storage on the pulse test results will be slight. If, on the other hand, the pulsing well and the responding well are close together or if after flow persists for a tong time, the effects of wellbore storage on the pulse test results may be substantial. The work described here began during the analysis phase of a series of pulse tests that were run in a small phase of a series of pulse tests that were run in a small pilot test area. Computer simulations of the tests showed pilot test area. Computer simulations of the tests showed that the method of Mondragon and Menzie would not compensate adequately for the strong effects of after flow on test results. Description of the Method Since a series of injection/falloff tests had been run in the pilot area, it was possible to obtain values for the ratio of formation transmissibility to the wellbore storage capacity, /F, at each well by type-curve matching techniques. Using this parameter, we can determine the after flow vs. time profiles that would occur during the pulsing-well shut-in periods and incorporate them into a computer simulation of each pulse test. A typical pulsing well-flow profile showing after flow during the shut-in period is profile showing after flow during the shut-in period is illustrated in Fig. 1. Given that the pulsing wells were observed to go on vacuum soon after shut-in and given that the wellbore storage capacity for these wells during the on-vacuum condition should be approximately two orders of magnitude larger than it would be during injection SPEJ p. 519


2012 ◽  
Vol 224 ◽  
pp. 133-137
Author(s):  
Xi Long Sun ◽  
Deng Feng Wang ◽  
Fang Lu

A side impact simulation model for a car was built according to China New Car Assessment Programme(CNCAP) and the 120ms response of the side impact was calculated by Pam-Crash software. The side security performance of base model was evaluated with the assessment criteria for the side security which was defined base on the experience and development requirement. Because of the stiffness insufficiency of base model, the body side structure was improved by multiple optimizations to improve the side security performance of body-in-white. The optimal scheme was validated by the test results, and the side security performance satisfies the production development requirements. The reliability and accuracy of the side impact model were validated according to the comparison analysis of test and simulation.


2015 ◽  
Vol 126 ◽  
pp. 670-674
Author(s):  
Ningbo Zhang ◽  
Xing Zheng ◽  
Ye Miao ◽  
Xi-peng Lv

2019 ◽  
Vol 2 (1) ◽  
Author(s):  
Irawan Malik ◽  
Moch Yunus ◽  
Soegeng Witjahjo ◽  
Romli Romli

Provision of spare parts for production equipment needs to be prepared with specifications, number of needs and correct time of availability, and especially for critical machining components that require correct and appropriate tactics so as not to disrupt its continuity of production. However, it is not a secret for a production department to make replacement parts that have the same mechanical properties through hardness testing of components that have failed. Through a computer program with an algorithm that is able to read a photo as a result of an indentation emphasis on hardness test, it can be known quickly a roundness diameter and calculate its hardness value which will be converted into one of the mechanical properties of a material so that a profile projector is not needed. Core of this implementation of our community service program is through an assignment scheme for employees of PT. Sri Trang Lingga Palembang, located on road TPA 2, RT. 26, RW. 29, Keramasan Subdistrict, Kertapati, Palembang City, South Sumatra, postal code 30149 is how to provide theoretical and experimental knowledge of the implementation of hardness tests on metal materials by emphasizing use of computer algorithms in reading photos of indentation hardness test results as an alternative to replacement use profile projector tool that is usually used for students of D-IV Mechanical Engineering Production and Maintenance (TMPP) Department of Mechanical Engineering Sriwijaya State Polytechnic to determine size of the indentation diameter emphasis from Brinnel hardness test.


Sign in / Sign up

Export Citation Format

Share Document