scholarly journals Role of Toxic Elements in Chronic Kidney Disease

2018 ◽  
Vol 8 (20) ◽  
Author(s):  
Adwalia Fevrier-Paul ◽  
Adedamola K Soyibo ◽  
Sylvia Mitchell ◽  
Mitko Voutchkov

Background. The kidney is central to many complex pathways in the body and kidney injury can precipitate multiple negative clinical outcomes. The resultant effect on nutrition and elemental body burden is bi-directional, confounding the very complex pathways that maintain homeostasis. These elemental changes themselves increase the risk of nutritional and biochemical disturbances. Objectives. The aim of the present study was to describe how toxic elements interface with complications of chronic kidney disease (CKD). Methods. The present review included studies focusing on the molecular mechanisms induced by exposure to elements with known nephrotoxic effects and associated health complications in CKD patients. Discussion. Many non-essential elements have nephrotoxic activity. Chronic injury can involve direct tubular damage, activation of mediators of oxidative stress, genetic modifications that predispose poor cardiovascular outcomes, as well as competitive uptake and element mobilization with essential elements, found to be deficient in CKD. Cardiovascular disease is the most common cause of mortality among CKD patients. Oxidative stress, a common denominator of both deficient and excess element body constitution, underlies many pathological derivatives of chronic kidney disease. Bone disorders, hematological dysfunction and dysregulation of acid-base balance are also prevalent in kidney patients. The largest contribution of toxic element body burden results from environmental exposure and lifestyle practices. However, standard medical therapies may also potentiate toxic element accumulation and re-injury of vulnerable tissue. Conclusions. For CKD patients, the cumulative effect of toxic elements persists throughout the disease and potentiates complications of CKD. Medical management should be coordinated between a medical team, dietitians and clinical researchers to mitigate those harmful effects. Competing Interests. The authors declare no competing financial interests

2021 ◽  
Vol 2021 ◽  
pp. 1-10
Author(s):  
Abderrahim Nemmar ◽  
Suhail Al-Salam ◽  
Sumaya Beegam ◽  
Nur Elena Zaaba ◽  
Javed Yasin ◽  
...  

Chronic kidney disease (CKD) is known to be associated with cardiovascular dysfunction. Dietary adenine intake in mice is also known to induce CKD. However, in this experimental model, the mechanisms underlying the cardiotoxicity and coagulation disturbances are not fully understood. Here, we evaluated cardiac inflammation, oxidative stress, DNA damage, and coagulation events in mice with adenine (0.2% w / w in feed for 4 weeks)-induced CKD. Control mice were fed with normal chow for the same duration. Adenine increased water intake, urine output, relative kidney weight, the plasma concentrations of urea and creatinine, and the urinary concentrations of kidney injury molecule-1 and neutrophil gelatinase-associated lipocalin. It also decreased the body weight and creatinine clearance, and caused kidney DNA damage. Renal histological analysis showed tubular dilation and damage and neutrophilic influx. Adenine induced a significant increase in systolic blood pressure and the concentrations of troponin I, tumor necrosis factor-α, and interleukin-1β in heart homogenates. It also augmented the levels of markers of lipid peroxidation measured by malondialdehyde production and 8-isoprostane, as well as the antioxidants superoxide dismutase and catalase. Immunohistochemical analysis of the hearts showed that adenine increased the expression of nuclear factor erythroid-derived 2-like 2 by cardiomyocytes. It also caused cardiac DNA damage. Moreover, compared with the control group, adenine induced a significant increase in the number of circulating platelet and shortened the thrombotic occlusion time in pial arterioles and venules in vivo, and induced a significant reduction in the prothrombin time and activated partial thromboplastin time. In conclusion, the administration of adenine in mice induced CKD-associated cardiac inflammation, oxidative stress, Nrf2 expression, and DNA damage. It also induced prothrombotic events in vivo. Therefore, this model can be satisfactorily used to study the cardiac pathophysiological events in subjects with CKD and the effect of drug treatment thereon.


2016 ◽  
Vol 2016 ◽  
pp. 1-10 ◽  
Author(s):  
Bojana Kisic ◽  
Dijana Miric ◽  
Ilija Dragojevic ◽  
Julijana Rasic ◽  
Ljiljana Popovic

Chronic kidney disease (CKD) is a worldwide public health problem. Patients with CKD have a number of disorders in the organism, and the presence of oxidative stress and systemic inflammation in these patients is the subject of numerous studies. Chronic inflammation joined with oxidative stress contributes to the development of numerous complications: accelerated atherosclerosis process and cardiovascular disease, emergence of Type 2 diabetes mellitus, development of malnutrition, anaemia, hyperparathyroidism, and so forth, affecting the prognosis and quality of life of patients with CKD. In this review we presented the potential role of the myeloperoxidase enzyme in the production of reactive/chlorinating intermediates and their role in oxidative damage to biomolecules in the body of patients with chronic kidney disease and end-stage renal disease. In addition, we discussed the role of modified lipoprotein particles under the influence of prooxidant MPO intermediates in the development of endothelial changes and cardiovascular complications in renal failure.


2018 ◽  
Vol 22 (4) ◽  
pp. 40-49 ◽  
Author(s):  
A. R. Volkova ◽  
O. D. Dygun ◽  
B. G. Lukichev ◽  
S. V. Dora ◽  
O. V. Galkina

Disturbance of the thyroid function is often detected in patients with different profiles. A special feature of patients with chronic kidney  disease is the higher incidence of various thyroid function  disturbances, especially hypothyroidism. It is known that in patients  with chronic kidney disease (CKD) iodine excretion from the body is  violated, since normally 90% of iodine is excreted in urine.  Accumulation of high concentrations of inorganic iodine leads to the  formation of the Wolf-Chaikoff effect: suppression of iodine  organization in the thyroid gland and disruption of the thyroid  hormones synthesis. Peripheral metabolism of thyroid hormones is  also disturbed, namely, deiodinase type I activity is suppressed and  peripheral conversion of T4 into T3 is inhibited (so-called low T3  syndrome). Therefore, patients with CKD are often diagnosed with  hypothyroidism, and the origin of hypothyroidism is not always  associated with the outcome of autoimmune thyroiditis. The article  presents an overview of a large number of population studies of  thyroid gland dysfunction in patients with CKD, as well as  experimental data specifying the pathogenetic mechanisms of  thyroid dysfunction in patients with CKD. Therapeutic tactics are still  not regulated. However, in a number of studies, replacement therapy with thyroid hormones in patients with CKD had some advantages.


Author(s):  
Patricia Tomás-Simó ◽  
Luis D’Marco ◽  
María Romero-Parra ◽  
Mari Carmen Tormos-Muñoz ◽  
Guillermo Sáez ◽  
...  

Background: Cardiovascular complications are the leading cause of morbidity and mortality at any stage of chronic kidney disease (CKD). Moreover, the high rate of cardiovascular mortality observed in these patients is associated with an accelerated atherosclerosis process that likely starts at the early stages of CKD. Thus, traditional and non-traditional or uremic-related factors represent a link between CKD and cardiovascular risk. Among non-conventional risk factors, particular focus has been placed on anaemia, mineral and bone disorders, inflammation, malnutrition and oxidative stress and, in this regard, connections have been reported between oxidative stress and cardiovascular disease in dialysis patients. Methods: We evaluated the oxidation process in different molecular lines (proteins, lipids and genetic material) in 155 non-dialysis patients at different stages of CKD and 45 healthy controls. To assess oxidative stress status, we analyzed oxidized glutathione (GSSG), reduced glutathione (GSH) and the oxidized/reduced glutathione ratio (GSSG/GSH) and other oxidation indicators, including malondialdehyde (MDA) and 8-oxo-2’-deoxyguanosine (8-oxo-dG). Results: An active grade of oxidative stress was found from the early stages of CKD onwards, which affected all of the molecular lines studied. We observed a heightened oxidative state (indicated by a higher level of oxidized molecules together with decreased levels of antioxidant molecules) as kidney function declined. Furthermore, oxidative stress-related alterations were significantly greater in CKD patients than in the control group. Conclusions: CKD patients exhibit significantly higher oxidative stress than healthy individuals, and these alterations intensify as eGFR declines, showing significant differences between CKD stages. Thus, future research is warranted to provide clearer results in this area.


2021 ◽  
Vol 164 ◽  
pp. 139-148
Author(s):  
Ting Gui ◽  
Yunlun Li ◽  
Shijun Zhang ◽  
Irina Alecu ◽  
Qingfa Chen ◽  
...  

Antioxidants ◽  
2021 ◽  
Vol 10 (6) ◽  
pp. 936
Author(s):  
Chien-Lin Lu ◽  
Cai-Mei Zheng ◽  
Kuo-Cheng Lu ◽  
Min-Tser Liao ◽  
Kun-Lin Wu ◽  
...  

The accumulation of the uremic toxin indoxyl sulfate (IS) induces target organ damage in chronic kidney disease (CKD) patients, and causes complications including cardiovascular diseases, renal osteodystrophy, muscle wasting, and anemia. IS stimulates reactive oxygen species (ROS) production in CKD, which impairs glomerular filtration by a direct cytotoxic effect on the mesangial cells. IS further reduces antioxidant capacity in renal proximal tubular cells and contributes to tubulointerstitial injury. IS-induced ROS formation triggers the switching of vascular smooth muscular cells to the osteoblastic phenotype, which induces cardiovascular risk. Low-turnover bone disease seen in early CKD relies on the inhibitory effects of IS on osteoblast viability and differentiation, and osteoblastic signaling via the parathyroid hormone. Excessive ROS and inflammatory cytokine releases caused by IS directly inhibit myocyte growth in muscle wasting via myokines’ effects. Moreover, IS triggers eryptosis via ROS-mediated oxidative stress, and elevates hepcidin levels in order to prevent iron flux in circulation in renal anemia. Thus, IS-induced oxidative stress underlies the mechanisms in CKD-related complications. This review summarizes the underlying mechanisms of how IS mediates oxidative stress in the pathogenesis of CKD’s complications. Furthermore, we also discuss the potential role of oral AST-120 in attenuating IS-mediated oxidative stress after gastrointestinal adsorption of the IS precursor indole.


Author(s):  
Sandro Mazzaferro ◽  
◽  
Domenico Bagordo ◽  
Natalia De Martini ◽  
Marzia Pasquali ◽  
...  

Toxins ◽  
2021 ◽  
Vol 13 (7) ◽  
pp. 472
Author(s):  
Elisabetta Margiotta ◽  
Lara Caldiroli ◽  
Maria Luisa Callegari ◽  
Francesco Miragoli ◽  
Francesca Zanoni ◽  
...  

Background: Sarcopenia is a prevalent condition in chronic kidney disease (CKD). We determined gut microbiota (gMB) composition in CKD patients with or without sarcopenia. Furthermore, we investigated whether in these patients, there was any association between gMB, uremic toxins, inflammation and oxidative stress. Methods: We analyzed gMB composition, uremic toxins (indoxyl sulphate and p-cresyl sulphate), inflammatory cytokines (interleukin 10, tumor necrosis factor α, interleukin 6, interleukin 17, interleukin 12 p70, monocyte chemoattractant protein-1 and fetuin-A) and oxidative stress (malondialdehyde) of 64 elderly CKD patients (10 < eGFR < 45 mL/min/1.73 m2, not on dialysis) categorized as sarcopenic and not-sarcopenic. Sarcopenia was defined according to European Working Group on Sarcopenia in Older People 2 criteria. Results: Sarcopenic patients had a greater abundance of the Micrococcaceae and Verrucomicrobiaceae families and of Megasphaera, Rothia, Veillonella, Akkermansia and Coprobacillus genera. They had a lower abundance of the Gemellaceae and Veillonellaceae families and of Acidaminococcus and Gemella genera. GMB was associated with uremic toxins, inflammatory cytokines and MDA. However, uremic toxins, inflammatory cytokines and MDA were not different in sarcopenic compared with not-sarcopenic individuals, except for interleukin 10, which was higher in not-sarcopenic patients. Conclusions: In older CKD patients, gMB was different in sarcopenic than in not-sarcopenic ones. Several bacterial families and genera were associated with uremic toxins and inflammatory cytokines, although none of these latter substantially different in sarcopenic versus not-sarcopenic patients.


2018 ◽  
Vol 314 (3) ◽  
pp. F423-F429 ◽  
Author(s):  
Danielle L. Kirkman ◽  
Bryce J. Muth ◽  
Meghan G. Ramick ◽  
Raymond R. Townsend ◽  
David G. Edwards

Cardiovascular disease is the leading cause of mortality in chronic kidney disease (CKD). Mitochondrial dysfunction secondary to CKD is a potential source of oxidative stress that may impair vascular function. This study sought to determine if mitochondria-derived reactive oxygen species contribute to microvascular dysfunction in stage 3–5 CKD. Cutaneous vasodilation in response to local heating was assessed in 20 CKD patients [60 ± 13 yr; estimated glomerular filtration rate (eGFR) 46 ± 13 ml·kg−1·1.73 m−2] and 11 matched healthy participants (58 ± 2 yr; eGFR >90 ml·kg−1·1.73 m−2). Participants were instrumented with two microdialysis fibers for the delivery of 1) Ringer solution, and 2) the mitochondria- specific superoxide scavenger MitoTempo. Skin blood flow was measured via laser Doppler flowmetry during standardized local heating (42°C). Cutaneous vascular conductance (CVC) was calculated as a percentage of the maximum conductance achieved with sodium nitroprusside infusion at 43°C. Urinary isofuran/F2-isoprostane ratios were assessed by gas-chromatography mass spectroscopy. Isofuran-to-F2-isoprostane ratios were increased in CKD patients (3.08 ± 0.32 vs. 1.69 ± 0.12 arbitrary units; P < 0.01) indicative of mitochondria-derived oxidative stress. Cutaneous vasodilation was impaired in CKD compared with healthy controls (87 ± 1 vs. 92 ± 1%CVCmax; P < 0.01). Infusion of MitoTempo significantly increased the plateau phase CVC in CKD patients (CKD Ringer vs. CKD MitoTempo: 87 ± 1 vs. 93 ± 1%CVCmax; P < 0.01) to similar levels observed in healthy controls ( P = 0.9). These data provide in vivo evidence that mitochondria-derived reactive oxygen species contribute to microvascular dysfunction in CKD and suggest that mitochondrial dysfunction may be a potential therapeutic target to improve CKD-related vascular dysfunction.


2016 ◽  
Vol 2016 ◽  
pp. 1-21 ◽  
Author(s):  
José Pedraza-Chaverri ◽  
Laura G. Sánchez-Lozada ◽  
Horacio Osorio-Alonso ◽  
Edilia Tapia ◽  
Alexandra Scholze

In chronic kidney disease inflammatory processes and stimulation of immune cells result in overproduction of free radicals. In combination with a reduced antioxidant capacity this causes oxidative stress. This review focuses on current pathogenic concepts of oxidative stress for the decline of kidney function and development of cardiovascular complications. We discuss the impact of mitochondrial alterations and dysfunction, a pathogenic role for hyperuricemia, and disturbances of vitamin D metabolism and signal transduction. Recent antioxidant therapy options including the use of vitamin D and pharmacologic therapies for hyperuricemia are discussed. Finally, we review some new therapy options in diabetic nephropathy including antidiabetic agents (noninsulin dependent), plant antioxidants, and food components as alternative antioxidant therapies.


Sign in / Sign up

Export Citation Format

Share Document