scholarly journals Effect of lactic acid bacteria and yeast supplementation on anti-nutritional factors and chemical composition of fermented total mixed ration containing cottonseed meal or rapeseed meal

2021 ◽  
Author(s):  
Hassan Ali Yusuf ◽  
Minyu Piao ◽  
Tao Ma ◽  
Ruiying Huo ◽  
Yan Tu
2017 ◽  
Vol 17 (1) ◽  
pp. 5
Author(s):  
Agus Safari ◽  
Sarah Fahma Ghina ◽  
Sadiah Djajasoepena ◽  
O. Suprijana ' ◽  
Ida Indrawati ◽  
...  

Mixed lactic acid bacteria culture is commonly used in yogurt production. In the present study, two lactic acid bacteria (Lactobacillus bulgaricus and Streptococcus thermophillus) was used as starter culture. Calcium carbonate was added to the starter culture to increase the quality of mixed starter culture of L. bulgaricus and S. thermophillus with ratio of 4:1. The present study was directed to investigate the chemical composition of mixed starter culture with and without calcium carbonat addition. Furthermore, the effect of each starter culture on yogurt product chemical composition was also examined. The pH, lactose, soluble protein and acid content was determined as chemical composition parameters. For starter culture without calcium carbonate addition, the yogurt has pH, lactose, soluble protein and acid content of 4.18–4.39, 4.18–4.39% w/v, 2.88–4.36% w/v and 0.82–0.99% w/v, respectively. While for starter culture with calcium carbonate addition, the yogurt product has pH, lactose, soluble protein and acid content of 4.26–4.37, 1.47–1.75% b/v, 3.42–4.95% w/v and 0.86–1.11% w/v, respectively. Addition of 0.05% w/v calcium carbonate to mixed starter culture gave effect on lactose consumption, where it still can convert lactose to lactic acid up to 45 days of storage. Furthermore, the yogurt product made with starter culture with calcium carbonate addition has higher soluble protein content compared to yogurt made with starter culture without calcium carbonate addition


2018 ◽  
Vol 19 (1) ◽  
pp. 17-23 ◽  
Author(s):  
Alloysius Chibuike O ◽  
Dawn Ify Agwaranze ◽  
Nkechi Valentina Aliba ◽  
Adindu Chukwuma K ◽  
Chioma Blessing N

2016 ◽  
Vol 23 (2) ◽  
pp. 277 ◽  
Author(s):  
Mustafa. A. Gassem ◽  
Magdi A. Osman ◽  
Isam A. Mohamed Ahmed ◽  
Ibrahim Abdel Rahman ◽  
Mohamad Fadol ◽  
...  

Agriculture ◽  
2020 ◽  
Vol 10 (8) ◽  
pp. 335
Author(s):  
Ana Paula Maia dos Santos ◽  
Edson Mauro Santos ◽  
Gherman Garcia Leal de Araújo ◽  
Juliana Silva de Oliveira ◽  
Anderson de Moura Zanine ◽  
...  

The current study aimed to evaluate the application effects of the preactivated Lactobacillus buchneri and urea on the fermentative characteristics, chemical composition and aerobic stability in corn silages. The design was completely randomized, in a 6 × 5 factorial arrangement, with six types of additive and five opening times. The treatments consisted of corn silage; corn silage with freeze-dried inoculant; corn silage with freeze-dried inoculant +1.0% urea; corn silage with activated inoculant; corn silage with activated inoculant +1.0% urea, and corn silage with 1.0% urea. Populations of lactic acid bacteria stabilized at the 70th day, with average values of 8.91 and 9.15 log cfu/g for corn silage with freeze-dried inoculant +1.0% urea and corn silage with freeze-dried inoculant, respectively. In contrast, the silages without additives showed significantly lower values of 7.52 log cfu/g forage at the 70th day. The silages with urea (isolated or associated with the inoculant) increased the total nitrogen content. The maximum temperature values were highest in the corn silages without additives, indicating that these silages were more prone to deterioration. The use of Lactobacillus buchneri activated proved to be more efficient in improving the fermentative profile of corn silages than the freeze-dried inoculant. The use of urea as an additive reduced the losses and improved the nutritional value and aerobic stability of corn silages. Additionally, the combination of Lactobacillus buchneri activated and urea may be used as a technique to improve the fermentative profile, chemical composition and aerobic stability of corn silages.


LWT ◽  
2016 ◽  
Vol 66 ◽  
pp. 406-412 ◽  
Author(s):  
Mariana Tristezza ◽  
Luca di Feo ◽  
Maria Tufariello ◽  
Francesco Grieco ◽  
Vittorio Capozzi ◽  
...  

Fermentation ◽  
2020 ◽  
Vol 6 (4) ◽  
pp. 115
Author(s):  
Marie Guérin ◽  
Christine Robert-Da Silva ◽  
Cyrielle Garcia ◽  
Fabienne Remize

Microbial polysaccharides have interesting and attractive characteristics for the food industry, especially when produced by food grade bacteria. Polysaccharides produced by lactic acid bacteria (LAB) during fermentation are extracellular macromolecules of either homo or hetero polysaccharidic nature, and can be classified according to their chemical composition and structure. The most prominent exopolysaccharide (EPS) producing lactic acid bacteria are Lactobacillus, Leuconostoc, Weissella, Lactococcus, Streptococcus, Pediococcus and Bifidobacterium sp. The EPS biosynthesis and regulation pathways are under the dependence of numerous factors as producing-species or strain, nutrient availability, and environmental conditions, resulting in varied carbohydrate compositions and beneficial properties. The interest is growing for fruits and vegetables fermented products, as new functional foods, and the present review is focused on exploring the EPS that could derive from lactic fermented fruit and vegetables. The chemical composition, biosynthetic pathways of EPS and their regulation mode is reported. The consequences of EPS on food quality, especially texture, are explored in relation to producing species. Attention is given to the scientific investigations on health benefits attributed to EPS such as prebiotic, antioxidant, anti-inflammatory and cholesterol lowering activities.


Sign in / Sign up

Export Citation Format

Share Document