Determination of Chloramphenicol Residues in Aquatic Products Using Immunoaffinity Column Cleanup and High Performance Liquid Chromatography with Ultraviolet Detection

2013 ◽  
Vol 96 (4) ◽  
pp. 897-901 ◽  
Author(s):  
Qing-Jie Zhang ◽  
Tao Peng ◽  
Dong-Dong Chen ◽  
Jie Xie ◽  
Xiong Wang ◽  
...  

Abstract A method based on HPLC with UV detection was developed for the quantitative determination of chloramphenicol (CAP) residues in aquatic products. The samples were extracted with ethyl acetate–ammonium hydroxide (98 + 2, v/v), followed by a cleanup step using an immunoaffinity column. The analytes were determined by HPLC-UV. Optimal conditions for the extraction and cleanup procedures are described. The linear regression equation was y = 91.47x – 8.60 with R2 = 0.9998 (y = peak area and x = CAP concentration) and showed a good reproducibility. The LOQ was 0.25 μg/kg for determining CAP spiked in the aquatic products. The mean recoveries of CAP from fish and shrimp samples fortified at 0.25–1.0 μg/kg were 88.7–93.1 and 92.0–97.3%, respectively; the repeatability RSDs were less than 8.1%. It was concluded that the method is simple, highly sensitive, and low cost for quantitatively measuring CAP residues in aquatic products. Analyte identification was confirmed by HPLC/MS/MS analysis.

Author(s):  
M. F. Zayats ◽  
S. M. Leschev

Based on the distribution constants of biphenazate, obtained experimentally and also calculated from literature data on the solubility of biphenazate in water and organic solvents, as well as experimental data on the extraction of biphenazate from plant matrices by various extractants, we selected the optimal conditions for extracting biphenazate from apples and cucumbers. The conditions for the purification of the extracts were also selected. Acetonitrile in the presence of ammonium sulfate and hexane was used for extraction of the pesticide. Purification of extracts of plant materials was carried out by partitioning between hexane and water-acetonitrile mixture. The samples obtained after this treatment were pure enough to determine the residual amounts of biphenazate in them at the maximum residue level determined in Belarus and the countries of the European Union, or lower using widespread liquid chromatography with diode-array (ultraviolet) detection.


2021 ◽  
Vol 21 (3) ◽  
pp. 1439-1445
Author(s):  
Yanpeng Shi ◽  
Lei Zhang ◽  
Ji Shao ◽  
Xiaoyue Shan ◽  
Haipeng Ye ◽  
...  

Herein, a facile and low-cost method for the preparation of activated carbon from peanut shell was developed for the first time for the fast extraction and determination of Bisphenol A in human urine. Bisphenol A was separated by EC-C18 column (250 mm×4.6 mm, 4 μm) and was detected by VWD, with retention time for qualitative analysis and peak area for quantitation. The parameters, pH values of the urine, adsorbent dose, adsorption time and so on, were optimized to achieve the excellent extraction performance. The detection limit of Bisphenol A in human urine was 1.0 ng · mL−1 (S/N = 3), and the standard curve was linear in the range of 5.0 ng · mL−1˜200.0 ng · mL−1 (r = 0.9993). The average recovery of Bisphenol A was 78.5˜96.2% at three spiked levels in the range of 5.00 ng · mL−1˜200.00 ng·mL−1. The method was proved simple, practical and highly sensitive, which could satisfy the request for the determination of Bisphenol A in human urine.


2013 ◽  
Vol 49 (3) ◽  
pp. 589-597 ◽  
Author(s):  
Alexandre Machado Rubim ◽  
Jaqueline Bandeira Rubenick ◽  
Luciane Varine Laporta ◽  
Clarice Madalena Bueno Rolim

A rapid, simple and low cost method was developed to determine diclofenac potassium (DP) in oral suspension, using a reverse-phase column (C8, 150 mm x 4.6 mm, 5 µm), mobile phase containing methanol/buffer phosphate (70:30 v/v, pH 2.5), at a flow rate of 1.0 mL/min, isocratic method, and ultraviolet detection at 275 nm. A linear response (r = 1.0000) was observed in the range of 10.0-50.0 µg/mL. Validation parameters such as linearity, specificity, precision, accuracy and robustness were evaluated. The method presented precision (repeatability: relative standard deviation = 1.21% and intermediate precision: between-analyst = 0.85%). The specificity of the assay was evaluated by exposure of diclofenac potassium under conditions of stress such as hydrolysis, photolysis, oxidation and high temperature. The method presented accuracy values between 98.28% and 101.95%. The results demonstrate the validity of the proposed method that allows determination of diclofenac potassium in oral suspension and may be used as an alternative method for routine analysis of this product in quality control.


Author(s):  
Qinyi Fu ◽  
Hongwei Zheng ◽  
Xiangning Han ◽  
Limin Cao ◽  
Jianxin Sui

AbstractA highly sensitive high-performance liquid chromatography (HPLC) method was developed for the simultaneous determination of eight biogenic amines in aquatic products. The biogenic amines in the sample were extracted with 5% trichloroacetic acid, derived with dansyl chloride (Dns-Cl) and quantified by a UV detector. The results showed that tryptamine (TRY), 2-phenethylamine (PHE), putrescine (PUT), cadaverine (CAD), histamine (HIS), tyramine (TPY), spermidine (SPD), and spermine (SPM) were effectively separated in 18 min in the range of 0.1–50 mg/kg with a good linear coefficient (r2 > 0.999). The detection limits (LODs) of the eight biogenic amines were 0.007–0.021 mg/kg while the limits of quantification (LOQs) were 0.024–0.069 mg/kg with the recoveries basically between 68 and 123%. The determination of eight biogenic amines in five commercial fermented aquatic products indicating that the developed method could be applied for the simultaneous detection of biogenic amines in multiple aquatic products.


1987 ◽  
Vol 33 (8) ◽  
pp. 1427-1430 ◽  
Author(s):  
R Sakuma ◽  
T Nishina ◽  
M Kitamura

Abstract We evaluated six deproteinizing methods for determination of uric acid in serum by "high-performance" liquid chromatography with ultraviolet detection: those involving zinc hydroxide, sodium tungstate, trichloroacetic acid, perchloric acid, acetonitrile, and centrifugal ultrafiltration (with Amicon MPS-1 devices). We used a Toyosoda ODS-120A reversed-phase column. The mobile phase was sodium phosphate buffer (40 mmol/L, pH 2.2) containing 20 mL of methanol per liter. Absorbance of the eluate was monitored at 284 nm. The precipitation method with perchloric acid gave high recoveries of uric acid and good precision, and results agreed with those by the uricase-catalase method of Kageyama (Clin Chim Acta 1971;31:421-6).


Sign in / Sign up

Export Citation Format

Share Document