scholarly journals Staphylococcal Enterotoxin Type R Pseudogene Presence in Staphylococcus aureus Reference and Outbreak Strains

2018 ◽  
Vol 101 (1) ◽  
pp. 216-220 ◽  
Author(s):  
Jennifer M Hait ◽  
Reginald W Bennett ◽  
Steven R Monday

Abstract Novel staphylococcal enterotoxins (SEs) expressed by Staphylococcus aureus strains have been described throughout the years, among these being the SE protein SER. To further characterize this toxin, this research used 13 S. aureus strains previously determined to contain the SE type R (ser) gene. These S. aureus isolates were evaluated using serological assays for identification of SEA–SEE and PCR for the detection of newly described SE and SE-like enterotoxin genes seg–seu. PCR-based cloning was performed such that the ser gene could be ligated into the pTrc99A plasmid expression vector. Ligation products were used to transform Escherichia coli (DH10Br) strains so that the ser open reading frame (ORF) could be sequenced and expressed for further characterization. Four of the 13 S. aureus strains tested harbored a ser ORF that yielded a PCR-positive result, but contained a frameshift mutation that subsequently introduced a premature stop codon abrogating expression of a full-sized functional protein. In this study, 30% of the PCR-positive ser strains tested were found to carry genes that coded for a nonfunctional SER protein, a finding that clearly illustrates the limited effectiveness of PCR for reliably evaluating enterotoxin potential for ser and, perhaps, other enterotoxin types.

2005 ◽  
Vol 49 (11) ◽  
pp. 4733-4738 ◽  
Author(s):  
Carlos Juan ◽  
María D. Maciá ◽  
Olivia Gutiérrez ◽  
Carmen Vidal ◽  
José L. Pérez ◽  
...  

ABSTRACT The molecular mechanisms of β-lactam resistance mediated by AmpC hyperproduction in natural strains of Pseudomonas aeruginosa were investigated in a collection of 10 isogenic, ceftazidime-susceptible and -resistant pairs of isolates, each sequentially recovered from a different intensive care unit patient treated with β-lactams. All 10 ceftazidime-resistant mutants hyperproduced AmpC (β-lactamase activities were 12- to 657-fold higher than those of the parent strains), but none of them harbored mutations in ampR or the ampC-ampR intergenic region. On the other hand, six of them harbored inactivating mutations in ampD: four contained frameshift mutations, one had a C→T mutation, creating a premature stop codon, and finally, one had a large deletion, including the complete ampDE region. Complementation studies revealed that only three of the six ampD mutants could be fully transcomplemented with either ampD- or ampDE-harboring plasmids, whereas one of them could be transcomplemented only with ampDE and two of them (including the mutant with the deletion of the ampDE region and one with an ampD frameshift mutation leading to an ampDE-fused open reading frame) could not be fully transcomplemented with any of the plasmids. Finally, one of the four mutants with no mutations in ampD could be transcomplemented, but only with ampDE. Although the inactivation of AmpD is found to be the most frequent mechanism of AmpC hyperproduction in clinical strains, our findings suggest that for certain types of mutations, AmpE plays an indirect role in resistance and that there are other unknown genes involved in AmpC hyperproduction, with at least one of them apparently located close to the ampDE operon.


2013 ◽  
Vol 113 (suppl_1) ◽  
Author(s):  
LU XIAO ◽  
Haiqing Bai ◽  
James Boyer ◽  
Bo Ye ◽  
Ning Hou ◽  
...  

Lu Xiao, Haiqing Bai, James Boyer, Bo Ye, Ning Hou, Haodong Xu, and Faqian Li Department of Pathology and Laboratory Medicine and Cardiovascular Research Institute, University of Rochester Medical Center, Rochester, NY, USA Backgrounds: Canonical Wnt signaling appears to have multiphasic and often antagonistic roles in cardiac development. The molecular mechanism for these opposing actions is not clear. We hypothesized that alternative splicing of TCF7L2, a nuclear interaction partner of beta-catenin is involved in the specificity of canonical Wnt signaling. Methods: RT-PCR were performed on embryonic (E16.5) and neonatal (day 8) hearts with primers spanning the end of first exon and the beginning of last exon and the products were cloned and sequenced. Result: There are totally 18 exons identified so far in TCF7L2. We sequenced 56 clones and 53 clones (29 from day 8) and (24 from E16.5) contained TCF7L2 sequences. No exon 6 or exon 17 was found in TCF7L2 transcripts of mouse hearts. Most clones (more than 80%) from E16.5 and day 8 hearts excluded exon 4. Both E16.5 and day 8 hearts had one clone with exon 9 deletion which does not change reading frame and another with alterations in exon 3 that lead to reading frame shift and premature stop codon. As reported in other organs, there were extensive alternative splicing in the C-terminal exons 14, 15 and 16. The inclusion of exon 14 was more frequently in day 8 (18 of 29, 62%) than in E16.5 (8 of 24, 33%) hearts. The peptide encoded by exon 14 has conserved functional motif. Additionally, this alternative exon usage can change the C-terminus of TCF7L2 to include or exclude the so-called E tail with two binding motifs for C-terminal binding protein. Conclusion: The isoform switch of TCF7L2 occurs in neonatal mouse hearts and may have a role in the terminal differentiation of cardiac myocytes during this period.


2019 ◽  
Vol 19 (1) ◽  
Author(s):  
Cristina Grippaudo ◽  
Concetta Cafiero ◽  
Isabella D’Apolito ◽  
Agnese Re ◽  
Maurizio Genuardi ◽  
...  

Abstract Background Aim of this work was to describe a rare inheritance pattern of Primary Failure of Eruption (PFE) in a small family with incomplete penetrance of PFE and a novel nonsense PTH1R variant. Case presentation The proband, a 26 year-old man with a significant bilateral open-bite, was diagnosed with PFE using clinical and radiographic characteristics. DNA was extracted from the proband and his immediate family using buccal swabs and the entire PTH1R coding sequence was analyzed, revealing a novel heterozygous nonsense variant in exon 7 of PTH1R (c.505G > T). This variant introduces a premature stop codon in position 169, predicted to result in the production of a truncated and non-functional protein. This variant has never been reported in association with PFE and is not present in the Genome Aggregation Database (gnomAD). Interestingly, the c.505G > T variant has also been identified in the unaffected mother of our proband, suggesting incomplete penetrance of PFE. Conclusions In this study, we report a new PTH1R variant that segregates in an autosomal dominant pattern and causes PFE with incomplete penetrance. This underlines the diagnostic value of a thorough clinical and genetic analysis of all family members in order to estimate accurate recurrence risks, identify subtle clinical manifestations and provide proper management of PFE patients.


Blood ◽  
2000 ◽  
Vol 96 (7) ◽  
pp. 2501-2505 ◽  
Author(s):  
Maurizio Margaglione ◽  
Rosa Santacroce ◽  
Donatella Colaizzo ◽  
Davide Seripa ◽  
Gennaro Vecchione ◽  
...  

Abstract Congenital afibrinogenemia is a rare autosomal recessive disorder characterized by a hemorrhagic diathesis of variable severity. Although more than 100 families with this disorder have been described, genetic defects have been characterized in few cases. An investigation of a young propositus, offspring of a consanguineous marriage, with undetectable levels of functional and quantitative fibrinogen, was conducted. Sequence analysis of the fibrinogen genes showed a homozygous G-to-A mutation at the fifth nucleotide (nt 2395) of the third intervening sequence (IVS) of the γ-chain gene. Her first-degree relatives, who had approximately half the normal fibrinogen values and showed concordance between functional and immunologic levels, were heterozygtes. The G-to-A change predicts the disappearance of a donor splice site. After transfection with a construct, containing either the wild-type or the mutated sequence, cells with the mutant construct showed an aberrant messenger RNA (mRNA), consistent with skipping of exon 3, but not the expected mRNA. Sequencing of the abnormal mRNA showed the complete absence of exon 3. Skipping of exon 3 predicts the deletion of amino acid sequence from residue 16 to residue 75 and shifting of reading frame at amino acid 76 with a premature stop codon within exon 4 at position 77. Thus, the truncated γ-chain gene product would not interact with other chains to form the mature fibrinogen molecule. The current findings show that mutations within highly conserved IVS regions of fibrinogen genes could affect the efficiency of normal splicing, giving rise to congenital afibrinogenemia.


2019 ◽  
Vol 32 (8) ◽  
pp. 752-758
Author(s):  
Peng Fan ◽  
Yu-Mo Zhao ◽  
Di Zhang ◽  
Ying Liao ◽  
Kun-Qi Yang ◽  
...  

Abstract BACKGROUND Liddle syndrome (LS) is an autosomal dominant disorder caused by single-gene mutations of the epithelial sodium channel (ENaC). It is characterized by early-onset hypertension, spontaneous hypokalemia and low plasma renin and aldosterone concentrations. In this study, we reported an LS pedigree with normokalemia resulting from a novel SCNN1G frameshift mutation. METHODS Peripheral blood samples were collected from the proband and eight family members for DNA extraction. Next-generation sequencing and Sanger sequencing were performed to identify the SCNN1G mutation. Clinical examinations were used to comprehensively evaluate the phenotypes of two patients. RESULTS Genetic analysis identified a novel SCNN1G frameshift mutation, p.Arg586Valfs*598, in the proband with LS. This heterozygous frameshift mutation generated a premature stop codon and deleted the vital PY motif of ENaC. The same mutation was present in his elder brother with LS, and his mother without any LS symptoms. Biochemical examination showed normokalemia in the three mutation carriers. The mutation identified was not found in any other family members, 100 hypertensives, or 100 healthy controls. CONCLUSIONS Our study identified a novel SCNN1G frameshift mutation in a Chinese family with LS, expanding the genetic spectrum of SCNN1G. Genetic testing helped us identify LS with a pathogenic mutation when the genotypes and phenotype were not completely consistent because of the hypokalemia. This case emphasizes that once a proband is diagnosed with LS by genetic testing, family genetic sequencing is necessary for early diagnosis and intervention for other family members, to protect against severe cardiovascular complications.


2007 ◽  
Vol 88 (11) ◽  
pp. 2941-2951 ◽  
Author(s):  
Mohammad M. Ahasan ◽  
Clive Sweet

Murine cytomegalovirus mutant Rc29, with a premature stop codon mutation in the m29 open reading frame (ORF), produced no apparent phenotype in cell culture or following infection of BALB/c mice. In contrast, a similar mutant virus, Rc29.1, with a premature stop codon mutation in its m29.1 ORF, showed reduced virus yields (2–3 log10 p.f.u. ml−1) in tissue culture. Mutant virus yields in BALB/c mice were delayed, reduced (∼1 log10 p.f.u. per tissue) and persisted less well in salivary glands compared with wild-type (wt) and revertant (Rv29.1) virus. In severe combined immunodeficiency mice, Rc29.1 virus showed delayed and reduced replication initially in all tissues (liver, spleen, kidneys, heart, lung and salivary glands). This delayed death until 31 days post-infection (p.i.) compared with wt (23 days p.i.) but at death virus yields were similar to wt. m29 gene transcription was initiated at early times post-infection, while production of a transcript from ORF m29.1 in the presence of cycloheximide indicated that it was an immediate-early gene. ORFs m29.1 and M28 are expressed from a bicistronic message, which is spliced infrequently. However, it is likely that each ORF expresses its own protein, as antiserum derived in rabbits to the m29.1 protein expressed in bacteria from the m29.1 ORF detected only one protein in Western blot analysis of the size predicted for the m29.1 protein. Our results suggest that neither ORF is essential for virus replication but m29.1 is important for optimal viral growth in vitro and in vivo.


Hemorrhoids and varicose veins are conditions resulting from loss of vascular integrity and, despite being worldwide health concerns, their pathogenesis has not been clearly defined. Many risk factors have been linked to the development of these complications including diet, defecating habits, alcohol consumption and other physiological factors. There are limited studies involving the possible role of genetic mutations in the development of hemorrhoids and varicose veins. FoxC2 is an important transcription factor that plays many roles in a variety of embryonic developmental processes, including angiogenesis. In the current study, we aimed to investigate the role of the FOXC2 gene variations in the development of familial hemorrhoids and varicose veins in the Jordanian population. Thirty-two samples were collected from eight families manifested hemorrhoids and/or varicose veins conditions. DNA sequencing was performed to screen variation in the FOXC2 gene. Two individuals with severe and early onset of hemorrhoids and varicose veins from the same family showed a frameshift mutation (881'inT) in the coding exon of the FOXC2 gene resulting in a premature stop codon at position +1386 (294 residues truncated peptide). In conclusion, our results support a possible role of genetic predisposition in the development of hemorrhoids and varicose veins with a frequency of 6% in the selected population


2021 ◽  
Vol 67 (6) ◽  
pp. 124-126
Author(s):  
N. Yu. Kalinchenko ◽  
A. A. Kolodkina ◽  
N. Yu. Raygorodskaya ◽  
A. N. Tiulpakov

n the article some corrections were needed. Abstract: “Heterozygous SF1 variants were found in 36 out of 310 (11.6%) of cases, among them 15 were not previously described”. has been corrected to read “Heterozygous SF1 variants were found in 36 out of 310 (11.6%) of cases, among them 22 were not previously described”. Results: “Heterozygous SF1 variants were found in 36 out of 310 (11.6%) of cases, among them 15 were not previously described”, has been corrected to read “Heterozygous SF1 variants were found in 36 out of 310 (11.6%) of cases, among them 22 were not previously described”. Among the newly identified variants in the NR1A1 gene, two lead to the premature stop codon -p. Y197X and p. Y25X, two lead to a shift in the reading frame-p. N385fs and p. L245fs, which does not allow us to doubt their pathogenicityAmong the previously undescribed variant changes, 5 missense mutations (p. C283Y, p. C283B, p.H24Q, p.M126K, p.E81K) and 1  synonymous substitution affecting the splicing site (E330E) were evaluated as pathogenic, and 5 others as probably pathogenic.Has been corrected to read: Among the newly identified variants in the NR1A1 gene, two lead to the premature stop codon -p. Y197X and p. Y25X, two lead to a shift in the reading frame — p.N385SfsX10 and p.L245AfsX53, which does not allow us to doubt their pathogenicity Among the previously undescribed variants, 5 missense mutations (p.C283Y, p.С283F, p.H24Q, p.M126K, p.A82T) and 1 synonymous substitution affecting the splicing site (E330E) were predicted as pathogenic, and 5 others as probably pathogenic by calculating pathogenicity. The authors apologize for these errors. 


2016 ◽  
Vol 4 (2) ◽  
Author(s):  
Qian Gong ◽  
Yi Hu ◽  
Yang Zhan ◽  
Dongliang Wang ◽  
Naidong Wang ◽  
...  

The complete genome of porcine circovirus type 2 (PCV2) strain YiY-3-2-H5 contains a cytidine insertion at position 962 in open reading frame 1. This insertion causes a reading frameshift of the rep gene, and thereafter a premature stop codon is present at the 3′ terminal end of this gene.


2008 ◽  
Vol 105 (2) ◽  
pp. 662-668 ◽  
Author(s):  
Nicola Laws ◽  
Renée A. Cornford-Nairn ◽  
Nicole Irwin ◽  
Russell Johnsen ◽  
Susan Fletcher ◽  
...  

The mdx mouse model of muscular dystrophy has a premature stop codon preventing production of dystrophin. This results in a progressive phenotype causing centronucleation of skeletal muscle fibers, muscle weakness, and fibrosis and kyphosis. Antisense oligonucleotides alter RNA splicing to exclude the nonsense mutation, while still maintaining the open reading frame to produce a shorter, but partially functional dystrophin protein that should ameliorate the extent of pathology. The present study investigated the benefits of chronic treatment of mdx mice by once-monthly deep intramuscular injections of antisense oligonucleotides into paraspinal muscles. After 8 mo of treatment, mdx mice had reduced development of kyphosis relative to untreated mdx mice, a benefit that was retained until completion of the study at 18 mo of age (16 mo of treatment). This was accompanied by reduced centronucleation in the latissimus dorsi and intercostals muscles and reduced fibrosis in the diaphragm and latissimus dorsi. These benefits were accompanied by a significant increase in dystrophin production. In conclusion, chronic antisense oligonucleotide treatment provides clear and ongoing benefits to paralumbar skeletal muscle, with associated marked reduction in kyphosis.


Sign in / Sign up

Export Citation Format

Share Document