scholarly journals A Brief Background on Cannabis: From Plant to Medical Indications

2019 ◽  
Vol 102 (2) ◽  
pp. 412-420 ◽  
Author(s):  
Linda E Klumpers ◽  
David L Thacker

Abstract Cannabis has been used as a medicinal plant for thousands of years. As a result of centuries of breeding and selection, there are now over 700 varieties of cannabis that contain hundreds of compounds, including cannabinoids and terpenes. Cannabinoids are fatty compounds that are the main biological active constituents of cannabis. Terpenes are volatilecompounds that occur in many plants and have distinct odors. Cannabinoids exert their effect on the body by binding to receptors, specifically cannabinoid receptors types 1 and 2. These receptors, together with endogenous cannabinoids and the systems forsynthesis, transport, and degradation, are called the Endocannabinoid System. The two most prevalent and commonly known cannabinoids in the cannabis plantare delta-9-tetrahydrocannabinol (THC) and cannabidiol. The speed, strength, and type of effects of cannabis vary based on the route of administration. THC is rapidly distributed through the body to fattytissues like the brain and is metabolized by the cytochrome P450 system to 11-hydroxy-THC, which is also psychoactive. Cannabis and cannabinoids have been indicated for several medical conditions. There is evidence of efficacy in the symptomatic treatmentof nausea and vomiting, pain, insomnia, post-traumatic stress disorder, anxiety, loss of appetite, Tourette’s syndrome, and epilepsy. Cannabis hasalso been associated with treatment for glaucoma, Huntington’s Disease, Parkinson’s Disease, and dystonia, but thereis not good evidence tosupport its efficacy. Side effects of cannabis include psychosis and anxiety, which can be severe. Here, we provided a summary ofthe history of cannabis,its pharmacology, and its medical uses.

2019 ◽  
Author(s):  
Tracey Shors ◽  
Han Y.M. Chang ◽  
Emma Millon

Sexual violence against women often leads to post-traumatic stress disorder (PTSD), a mental illness characterized by intrusive thoughts and memories about the traumatic event (Shors and Millon, 2016). These mental processes are obviously generated by the brain but often felt in the body. MAP Training My Brain is a novel clinical intervention that combines mental training of the brain with physical training of the body (Curlik and Shors, 2013; Shors et al., 2014). Each training session begins with 20-min of sitting meditation, followed by 10-min of slow-walking meditation, and ending with 30-min of aerobic exercise at 60–80% of the maximum heart rate (see maptrainmybrain.com). In previous studies, the combination of mental and physical (MAP) training together significantly reduced symptoms of depression and ruminative thoughts, while reducing anxiety (Shors et al., 2014, 2017; Alderman et al., 2016). We also documented positive changes in brain activity during cognitive control and whole-body oxygen consumption in various populations. In the present pilot study, we asked whether the combination of meditation and aerobic exercise during MAP Training would reduce trauma-related thoughts, ruminations, and memories in women and if so, whether the combination would be more effective than either activity alone. To test this hypothesis, interventions were provided to a group of women (n = 105), many of whom had a history of sexual violence (n = 32). Groups were trained with (1) MAP Training, (2) meditation alone, (3) aerobic exercise alone, or (4) not trained. Individuals in training groups completed two sessions a week for at least 6 weeks. MAP Training My Brain significantly reduced post-traumatic cognitions and ruminative thoughts in women with a history of sexual violence, whereas meditation alone, and exercise alone did not. MAP Training significantly enhanced a measure of self-worth, whereas meditation and exercise alone did not. Similar positive effects were observed for all participants, although meditation alone was also effective in reducing trauma-related thoughts. Overall, these data indicate the combination of meditation and exercise is synergistic. As a consequence, MAP Training is preferable and especially so for women who have experienced sexual violence in their past. Simply put, the whole is greater than the sum of its parts.


2014 ◽  
Vol 10 (1) ◽  
pp. 81-93
Author(s):  
Laurel Smith Stvan

Examination of the term stress in naturally occurring vernacular prose provides evidence of three separate senses being conflated. A corpus analysis of 818 instances of stress from non-academic texts in the Corpus of Contemporary American English (COCA) and the Corpus of American Discourses on Health (CADOH) shows a negative prosody for stress, which is portrayed variously as a source outside the body, a physical symptom within the body and an emotional state. The data show that contemporary speakers intermingle the three senses, making more difficult a discussion between doctors and patients of ways to ‘reduce stress’, when stress might be interpreted as a stressor, a symptom, or state of anxiety. This conflation of senses reinforces the impression that stress is pervasive and increasing. In addition, a semantic shift is also refining a new sense for stress, as post-traumatic stress develops as a specific subtype of emotional stress whose use has increased in circulation in the past 20 years.


2021 ◽  
Vol 79 (4) ◽  
pp. 1723-1734
Author(s):  
Shlomo Sragovich ◽  
Michael Gershovits ◽  
Jacqueline C.K. Lam ◽  
Victor O.K. Li ◽  
Illana Gozes

Background: We recently discovered autism/intellectual disability somatic mutations in postmortem brains, presenting higher frequency in Alzheimer’s disease subjects, compared with the controls. We further revealed high impact cytoskeletal gene mutations, coupled with potential cytoskeleton-targeted repair mechanisms. Objective: The current study was aimed at further discerning if somatic mutations in brain diseases are presented only in the most affected tissue (the brain), or if blood samples phenocopy the brain, toward potential diagnostics. Methods: Variant calling analyses on an RNA-seq database including peripheral blood samples from 85 soldiers (58 controls and 27 with symptoms of post-traumatic stress disorder, PTSD) was performed. Results: High (e.g., protein truncating) as well as moderate impact (e.g., single amino acid change) germline and putative somatic mutations in thousands of genes were found. Further crossing the mutated genes with autism, intellectual disability, cytoskeleton, inflammation, and DNA repair databases, identified the highest number of cytoskeletal-mutated genes (187 high and 442 moderate impact). Most of the mutated genes were shared and only when crossed with the inflammation database, more putative high impact mutated genes specific to the PTSD-symptom cohorts versus the controls (14 versus 13) were revealed, highlighting tumor necrosis factor specifically in the PTSD-symptom cohorts. Conclusion: With microtubules and neuro-immune interactions playing essential roles in brain neuroprotection and Alzheimer-related neurodegeneration, the current mutation discoveries contribute to mechanistic understanding of PTSD and brain protection, as well as provide future diagnostics toward personalized military deployment strategies and drug design.


2012 ◽  
Vol 2 (6) ◽  
pp. 241-254 ◽  
Author(s):  
Zerrin Atakan

Cannabis is a complex plant, with major compounds such as delta-9-tetrahydrocannabinol and cannabidiol, which have opposing effects. The discovery of its compounds has led to the further discovery of an important neurotransmitter system called the endocannabinoid system. This system is widely distributed in the brain and in the body, and is considered to be responsible for numerous significant functions. There has been a recent and consistent worldwide increase in cannabis potency, with increasing associated health concerns. A number of epidemiological research projects have shown links between dose-related cannabis use and an increased risk of development of an enduring psychotic illness. However, it is also known that not everyone who uses cannabis is affected adversely in the same way. What makes someone more susceptible to its negative effects is not yet known, however there are some emerging vulnerability factors, ranging from certain genes to personality characteristics. In this article we first provide an overview of the biochemical basis of cannabis research by examining the different effects of the two main compounds of the plant and the endocannabinoid system, and then go on to review available information on the possible factors explaining variation of its effects upon different individuals.


Sign in / Sign up

Export Citation Format

Share Document