Oxygen modulates the differentiation of human fetal lung in vitro and its responsiveness to cAMP

1993 ◽  
Vol 264 (5) ◽  
pp. L465-L474 ◽  
Author(s):  
M. J. Acarregui ◽  
J. M. Snyder ◽  
C. R. Mendelson

Previously, it was found that lung explants from mid-trimester human abortuses differentiate spontaneously in organ culture in serum-free defined medium in an atmosphere of 95% air-5% CO2. Dibutyryl adenosine 3',5'-cyclic monophosphate (DBcAMP) treatment of human fetal lung in culture increases the rate of morphological differentiation and enhances expression of the surfactant protein A (SP-A) gene. To begin to define the factors responsible for this accelerated in vitro differentiation, we analyzed the effects of atmospheric oxygen on the morphological and biochemical development of human fetal lung in culture and on responsiveness of the cultured tissue to DBcAMP. We found that when lung explants were maintained in an atmosphere containing 1% oxygen they failed to differentiate spontaneously and no induction of SP-A gene expression was apparent. Furthermore, at 1% oxygen, DBcAMP had no effect to stimulate morphological differentiation or SP-A gene expression. When lung tissues that had been maintained for 5 days in 1% oxygen were transferred to an environment containing 20% oxygen, there was rapid morphological development and induction of SP-A gene expression. The effects on morphological development were manifest within 24 h of transfer to the 20% oxygen environment; within 72 h, a marked stimulatory effect of DBcAMP on SP-A gene expression also was observed. Our findings further suggest that the effects of oxygen on the levels of SP-A and SP-A mRNA are concentration dependent. Interestingly, the inductive effects of DBcAMP on SP-A gene expression were apparent only at oxygen concentrations > or = 10%. Morphological differentiation of the cultured human fetal lung tissue also was influenced by oxygen in a concentration-dependent manner. These findings suggest that oxygen plays an important permissive role in the spontaneous differentiation of human fetal lung in vitro.

Nutrients ◽  
2020 ◽  
Vol 13 (1) ◽  
pp. 123
Author(s):  
Natalia K. Kordulewska ◽  
Justyna Topa ◽  
Małgorzata Tańska ◽  
Anna Cieślińska ◽  
Ewa Fiedorowicz ◽  
...  

Lipopolysaccharydes (LPS) are responsible for the intestinal inflammatory reaction, as they may disrupt tight junctions and induce cytokines (CKs) secretion. Osthole has a wide spectrum of pharmacological effects, thus its anti-inflammatory potential in the LPS-treated Caco-2 cell line as well as in Caco-2/THP-1 and Caco-2/macrophages co-cultures was investigated. In brief, Caco-2 cells and co-cultures were incubated with LPS to induce an inflammatory reaction, after which osthole (150–450 ng/mL) was applied to reduce this effect. After 24 h, the level of secreted CKs and changes in gene expression were examined. LPS significantly increased the levels of IL-1β, -6, -8, and TNF-α, while osthole reduced this effect in a concentration-dependent manner, with the most significant decrease when a 450 ng/mL dose was applied (p < 0.0001). A similar trend was observed in changes in gene expression, with the significant osthole efficiency at a concentration of 450 ng/μL for IL1R1 and COX-2 (p < 0.01) and 300 ng/μL for NF-κB (p < 0.001). Osthole increased Caco-2 monolayer permeability, thus if it would ever be considered as a potential drug for minimizing intestinal inflammatory symptoms, its safety should be confirmed in extended in vitro and in vivo studies.


Author(s):  
Mohammad Reza Shiran ◽  
Elham Mahmoudian ◽  
Abolghasem Ajami ◽  
Seyed Mostafa Hosseini ◽  
Ayjamal Khojasteh ◽  
...  

Abstract Objectives Angiogenesis is the most important challenge in breast cancer treatment. Recently, scientists become interesting in rare natural products and intensive researches was performed to identify their pharmacological profile. Auraptene shows helpful effects such as cancer chemo-preventive, anti-inflammatory, anti-oxidant, immuno-modulatory. In this regard, we investigated the anti-angiogenesis effect of Auraptene in in-vitro and in-vivo model of breast cancer. Methods In this study, 4T, MDA-MB-231 and HUVEC cell lines were used. The proliferation study was done by MTT assay. For tube formation assay, 250 matrigel, 1 × 104 HUVEC treated with Auraptene, 20 ng/mL EGF, 20 ng/mL bFGF and 20 ng/mL VEGF were used. Gene expression of important gene related to angiogenesis in animal model of breast cancer was investigated by Real-time PCR. Protein expression of VCAM-1 and TNFR-1 gene related to angiogenesis in animal model of breast cancer was investigated by western-blot. Results Auraptene treatment led to reduction in cell viability of MDA-MB-231 in a concentration-dependent manner. Also, we observed change in the number of tubes or branches formed by cells incubated with 40 and 80 μM Auraptene. Auraptene effect the gene expression of important gene related to angiogenesis (VEGF, VEGFR2, COX2, IFNɣ). Moreover, the western blot data exhibited that Auraptene effect the protein expression of VCAM-1 and TNFR-1. Conclusions Overall, this study shows that Auraptene significantly suppressed angiogenesis via down-regulation of VEGF, VEGFR2, VCAM-1, TNFR-1, COX-2 and up-regulation of IFNγ.


2002 ◽  
Vol 282 (3) ◽  
pp. L386-L393 ◽  
Author(s):  
Jonathan M. Klein ◽  
Troy A. McCarthy ◽  
John M. Dagle ◽  
Jeanne M. Snyder

Surfactant protein A (SP-A) is the most abundant of the surfactant-associated proteins. SP-A is involved in the formation of tubular myelin, the modulation of the surface tension-reducing properties of surfactant phospholipids, the metabolism of surfactant phospholipids, and local pulmonary host defense. We hypothesized that elimination of SP-A would alter the regulation of SP-B gene expression and the formation of tubular myelin. Midtrimester human fetal lung explants were cultured for 3–5 days in the presence or absence of an antisense 18-mer phosphorothioate oligonucleotide (ON) complementary to SP-A mRNA. After 3 days in culture, SP-A mRNA was undetectable in antisense ON-treated explants. After 5 days in culture, levels of SP-A protein were also decreased by antisense treatment. SP-B mRNA levels were not affected by the antisense SP-A ON treatment. However, there was decreased tubular myelin formation in the antisense SP-A ON-treated tissue. We conclude that selective elimination of SP-A mRNA and protein results in a decrease in tubular myelin formation in human fetal lung without affecting SP-B mRNA. We speculate that SP-A is critical to the formation of tubular myelin during human lung development and that the regulation of SP-B gene expression is independent of SP-A gene expression.


2005 ◽  
Vol 288 (1) ◽  
pp. L150-L158 ◽  
Author(s):  
Anatoly N. Mikerov ◽  
Todd M. Umstead ◽  
Weixiong Huang ◽  
Wenlei Liu ◽  
David S. Phelps ◽  
...  

Chronic airway inflammation caused by Pseudomonas aeruginosa is an important feature of cystic fibrosis (CF). Surfactant protein A (SP-A) enhances phagocytosis of P. aeruginosa. Two genes, SP-A1 and SP-A2, encode human SP-A. We hypothesized that genetically determined differences in the activity of SP-A1 and SP-A2 gene products exist. To test this, we studied association of a nonmucoid P. aeruginosa strain (ATCC 39018) with rat alveolar macrophages in the presence or absence of insect cell-expressed human SP-A variants. We used two trios, each consisting of SP-A1, SP-A2, and their coexpressed SP-A1/SP-A2 variants. We tested the 6A2and 6A4alleles (for SP-A1), the 1A0and 1A alleles (for SP-A2), and their respective coexpressed SP-A1/SP-A2 gene products. After incubation of alveolar macrophages with P. aeruginosa in the presence of the SP-A variants at 37°C for 1 h, the cell association of bacteria was assessed by light microscopy analysis. We found 1) depending on SP-A concentration and variant, SP-A2 variants significantly increased the cell association more than the SP-A1 variants (the phagocytic index for SP-A1 was ∼52–95% of the SP-A2 activity); 2) coexpressed variants at certain concentrations were more active than single gene products; and 3) the phagocytic index for SP-A variants was ∼18–41% of the human SP-A from bronchoalveolar lavage. We conclude that human SP-A variants in vitro enhance association of P. aeruginosa with rat alveolar macrophages differentially and in a concentration-dependent manner, with SP-A2 variants having a higher activity compared with SP-A1 variants.


2020 ◽  
Vol 2020 ◽  
pp. 1-11
Author(s):  
Lei Wang ◽  
Feng Ding ◽  
Shaojie Shi ◽  
Xingxing Wang ◽  
Sijia Zhang ◽  
...  

The abnormal environment of type 2 diabetes mellitus (T2DM) leads to a substantial decrease in osteogenic function of stem cells. However, the gene sequence does not vary before and after disease for the patient. This phenomenon may be related to changes in osteogenesis-related gene expression caused by DNA methylation. In this study, we established T2DM models to extract adipose-derived stem cells (ASCs) for different gene identifications through DNA methylation sequencing. Specific fragments of methylation changes in the target gene (Calca) were identified by IGV analysis. CGRP was applied to compare the effects on ASCs-T2DM morphology via phalloidin staining, proliferation through CCK-8 assay, and osteogenic differentiation with osteogenic staining, qPCR, and repair of calvarial defect. Furthermore, 5-azacytidine (5-az) was used to intervene ASCs-T2DM to verify the relationship between the methylation level of the target fragment and expression of Calca. We found that the DNA methylation level of target fragment of Calca in ASCs-T2DM was higher than that in ASCs-C. CGRP intervention showed that it did not change the morphology of ASCs-T2DM but could improve proliferation within a certain range. Meanwhile, it could significantly enhance the formation of ALP and calcium nodules in ASCs-T2DM, increase the expression of osteogenesis-related genes in vitro, and promote the healing of calvarial defects of T2DM rat in a concentration-dependent manner. 5-az intervention indicated that the reduction of the methylation level in Calca target fragment of ASCs-T2DM indeed escalated the gene expression, which may be related to DNMT1. Taken together, the environment of T2DM could upregulate the methylation level in the promoter region of Calca and then decrease the Calca expression. The coding product of Calca revealed a promoting role for osteogenic differentiation of ASCs-T2DM. This result provides an implication for us to understand the mechanism of the decreased osteogenic ability of ASCs-T2DM and improve its osteogenic capacity.


2021 ◽  
Vol 23 (Supplement_6) ◽  
pp. vi37-vi37
Author(s):  
Amber Kerstetter-Fogle ◽  
Peggy Harris ◽  
Harry Hoffman ◽  
Anthony Sloan ◽  
Theresa Elder ◽  
...  

Abstract INTRODUCTION Glioblastomas (GBM) are the most common and malignant primary brain tumors. Their rapid growth and invasion into neuronal parenchyma is devastating, with limited treatment options. Genomic alterations have been extensively studied in gliomas tumors, including aberrations of the Slit-Robo pathway genes. The Slit family of secreted proteins modulates migration of somatic cells during development and mediate their effect by binding to its receptor Roundabout (Robo). Genes in the Slit-Robo pathways have been shown to be inactivated by promoter hypermethylation in a number of human cancers. We hypothesize that Slit-Robo signaling pathways are modulated via promotor methylation, controlling GBM malignancy and regulating the invasive capacity of glioma stem cells (GSCs). METHODS We characterized expression of mRNA and protein via real-time PCR and Western blots in primary GBM tissue. We then assessed whether epigenetic alterations correlate with Slit-Robo expression by conducting in vitro demethylation assays in patient derived GSCs followed by real-time PCR. We conducted invasion assays to elucidate the role of Slit in GSC invasion. RESULTS The Cancer Genome Atlas indicates a negative correlation between Robo2 expression and glioma patient survival (17.1 months versus 37.4 months; p &lt; 1.4E-4). We discovered differential expression of the Slit (1-3) and Robo (2, 3) genes and protein of up to 8-fold between grades 3 and 4 astrocytomas (8.34 versus 4.73 density). Treating patient derived glioma stem cells with 5-aza-2-deoxycytidine results in induction in Slit-Robo gene expression ranging from 5 – 40-fold (p &lt; 0.01). Addition of Slit 2 and 3 in an invasion assay induced migration of GSCs in a differential and concentration dependent manner of 10 - 25% (p &lt; 0.05). CONCLUSIONS Our results suggest that promoter methylation and gene expression of the Slit-Robo genes correlates with protein expression, tumor invasiveness, and prognosis and a potential therapeutic target.


1998 ◽  
Vol 17 (11) ◽  
pp. 600-605 ◽  
Author(s):  
Pierrette Labbé ◽  
Martin Pelletier ◽  
Felix O Omara ◽  
Denis Girard

An influx of neutrophils into the airways is a common feature observed during pulmonary inflammation induced by air pollutants, including sulfur dioxide and sulfates. In the present study focusing on the in vitro interactions of sodium sulfite (Na2SO3) with human neutrophils, we confirm results indicating that this sulfite induces superoxide production (O27) by itself. We demonstrated that this response can occur more rapidly than previously reported (within 5 min), and that Na2SO3 can act as a priming agent, in a concentration-dependent fashion, to the bacterial tripeptide N-formyl-methionineleucine-phenylalanine (fMLP) by increasing O27 production. In addition, our results show that Na2SO3 induces gene expression in human neutrophils in a concentration-dependent manner as assessed by incorporation of 5-[3H] uridine into total RNA. However, it does not induce cell shape changes. We also demonstrated that Na2SO3 does not modulate neutrophil apoptosis nor reverse the well-known delaying effect of granulocyte-macrophage colony-stimulating factor (GM-CSF) on apoptosis. We conclude that Na2SO3 acts rapidly on neutrophil physiology, within a few minutes with respect to superoxide production, and a few hours (4 h) with respect to gene expression without altering a biological process such as the rate of apoptosis evaluated after a long period of incubation (20 h). We further conclude that Na2SO3-induced production of O27 does not drive neutrophils to undergo apoptosis, a mechanism known to occur in other conditions. Therefore, the potential toxicity of Na2SO3 during pulmonary inflammation or lung-associated diseases may be related to its ability to induce superoxide production without altering neutrophil apoptosis rate.


1998 ◽  
Vol 274 (3) ◽  
pp. L343-L350 ◽  
Author(s):  
Michael J. Acarregui ◽  
Ashish R. Kumar ◽  
Scott T. Penisten ◽  
Jeanne M. Snyder

The effect of O2 on surfactant protein (SP) A mRNA transcription and half-life was determined in midtrimester human fetal lung tissue cultured in either 20 (control) or 70% O2. Incubation of tissues in 70% O2 resulted in a 133% increase in SP-A mRNA transcription rate compared with control tissues. The SP-A mRNA half-life was increased by 54% in lung tissues cultured in 70% O2 vs. control tissues. Western blot analysis indicated a threefold increase in SP-A in the 70% O2 condition, demonstrating that O2 regulation of SP-A mRNA levels results in corresponding changes in SP-A levels. Primer extension assays were performed to determine whether the observed increase in SP-A mRNA levels is secondary to the preferential expression of one of the human SP-A genes, SP-A1 or SP-A2. Transcripts of both the SP-A1 and SP-A2 genes were increased ∼100% in tissues maintained in 70% O2 compared with control tissues. These data demonstrate that O2regulates human SP-A mRNA levels by both transcriptional and posttranscriptional mechanisms. Furthermore, because there is no differential effect of O2 on the expression of SP-A1 vs. SP-A2 mRNA, the properties of these genes that mediate regulation by O2 must be conserved between the two genes.


Sign in / Sign up

Export Citation Format

Share Document