scholarly journals Opinion Mining and Active Learning: a Comparison of Sampling Strategies

2019 ◽  
Author(s):  
Douglas Vitório ◽  
Ellen Souza ◽  
Adriano L. I. Oliveira

There are two main problems when performing Opinion Mining (OM) with data streams: the lack of labeled data and the need to update the learning model. The most used OM techniques cannot deal well with these challenges, so, an alternative is to use semi-supervised methods, such as the Active Learning, which is a method to label only selected data rather than the entire data set; however, it requires the choice of a sampling strategy to select the data to be labeled. In this paper, we evaluated eight strategies in ten data sets, in order to identify the best ones for OM with Twitter streams. According to our experiments, the Entropy strategy showed the best results, but it selects a large number of instances to be labeled, requiring further investigation.

2020 ◽  
Vol 6 ◽  
Author(s):  
Jaime de Miguel Rodríguez ◽  
Maria Eugenia Villafañe ◽  
Luka Piškorec ◽  
Fernando Sancho Caparrini

Abstract This work presents a methodology for the generation of novel 3D objects resembling wireframes of building types. These result from the reconstruction of interpolated locations within the learnt distribution of variational autoencoders (VAEs), a deep generative machine learning model based on neural networks. The data set used features a scheme for geometry representation based on a ‘connectivity map’ that is especially suited to express the wireframe objects that compose it. Additionally, the input samples are generated through ‘parametric augmentation’, a strategy proposed in this study that creates coherent variations among data by enabling a set of parameters to alter representative features on a given building type. In the experiments that are described in this paper, more than 150 k input samples belonging to two building types have been processed during the training of a VAE model. The main contribution of this paper has been to explore parametric augmentation for the generation of large data sets of 3D geometries, showcasing its problems and limitations in the context of neural networks and VAEs. Results show that the generation of interpolated hybrid geometries is a challenging task. Despite the difficulty of the endeavour, promising advances are presented.


Cancers ◽  
2021 ◽  
Vol 14 (1) ◽  
pp. 12
Author(s):  
Jose M. Castillo T. ◽  
Muhammad Arif ◽  
Martijn P. A. Starmans ◽  
Wiro J. Niessen ◽  
Chris H. Bangma ◽  
...  

The computer-aided analysis of prostate multiparametric MRI (mpMRI) could improve significant-prostate-cancer (PCa) detection. Various deep-learning- and radiomics-based methods for significant-PCa segmentation or classification have been reported in the literature. To be able to assess the generalizability of the performance of these methods, using various external data sets is crucial. While both deep-learning and radiomics approaches have been compared based on the same data set of one center, the comparison of the performances of both approaches on various data sets from different centers and different scanners is lacking. The goal of this study was to compare the performance of a deep-learning model with the performance of a radiomics model for the significant-PCa diagnosis of the cohorts of various patients. We included the data from two consecutive patient cohorts from our own center (n = 371 patients), and two external sets of which one was a publicly available patient cohort (n = 195 patients) and the other contained data from patients from two hospitals (n = 79 patients). Using multiparametric MRI (mpMRI), the radiologist tumor delineations and pathology reports were collected for all patients. During training, one of our patient cohorts (n = 271 patients) was used for both the deep-learning- and radiomics-model development, and the three remaining cohorts (n = 374 patients) were kept as unseen test sets. The performances of the models were assessed in terms of their area under the receiver-operating-characteristic curve (AUC). Whereas the internal cross-validation showed a higher AUC for the deep-learning approach, the radiomics model obtained AUCs of 0.88, 0.91 and 0.65 on the independent test sets compared to AUCs of 0.70, 0.73 and 0.44 for the deep-learning model. Our radiomics model that was based on delineated regions resulted in a more accurate tool for significant-PCa classification in the three unseen test sets when compared to a fully automated deep-learning model.


Algorithms ◽  
2020 ◽  
Vol 13 (5) ◽  
pp. 126 ◽  
Author(s):  
Feiyang Chen ◽  
Ying Jiang ◽  
Xiangrui Zeng ◽  
Jing Zhang ◽  
Xin Gao ◽  
...  

Salient segmentation is a critical step in biomedical image analysis, aiming to cut out regions that are most interesting to humans. Recently, supervised methods have achieved promising results in biomedical areas, but they depend on annotated training data sets, which requires labor and proficiency in related background knowledge. In contrast, unsupervised learning makes data-driven decisions by obtaining insights directly from the data themselves. In this paper, we propose a completely unsupervised self-aware network based on pre-training and attentional backpropagation for biomedical salient segmentation, named as PUB-SalNet. Firstly, we aggregate a new biomedical data set from several simulated Cellular Electron Cryo-Tomography (CECT) data sets featuring rich salient objects, different SNR settings, and various resolutions, which is called SalSeg-CECT. Based on the SalSeg-CECT data set, we then pre-train a model specially designed for biomedical tasks as a backbone module to initialize network parameters. Next, we present a U-SalNet network to learn to selectively attend to salient objects. It includes two types of attention modules to facilitate learning saliency through global contrast and local similarity. Lastly, we jointly refine the salient regions together with feature representations from U-SalNet, with the parameters updated by self-aware attentional backpropagation. We apply PUB-SalNet for analysis of 2D simulated and real images and achieve state-of-the-art performance on simulated biomedical data sets. Furthermore, our proposed PUB-SalNet can be easily extended to 3D images. The experimental results on the 2d and 3d data sets also demonstrate the generalization ability and robustness of our method.


2021 ◽  
Vol 37 (1) ◽  
pp. 71-89
Author(s):  
Vu-Tuan Dang ◽  
Viet-Vu Vu ◽  
Hong-Quan Do ◽  
Thi Kieu Oanh Le

During the past few years, semi-supervised clustering has emerged as a new interesting direction in machine learning research. In a semi-supervised clustering algorithm, the clustering results can be significantly improved by using side information, which is available or collected from users. There are two main kinds of side information that can be learned in semi-supervised clustering algorithms: the class labels - called seeds or the pairwise constraints. The first semi-supervised clustering was introduced in 2000, and since that, many algorithms have been presented in literature. However, it is not easy to use both types of side information in the same algorithm. To address the problem, this paper proposes a semi-supervised graph based clustering algorithm that tries to use seeds and constraints in the clustering process, called MCSSGC. Moreover, we introduces a simple but efficient active learning method to collect the constraints that can boost the performance of MCSSGC, named KMMFFQS. In order to verify effectiveness of the proposed algorithm, we conducted a series of experiments not only on real data sets from UCI, but also on a document data set applied in an Information Extraction of Vietnamese documents. These obtained results show that the proposed algorithm can significantly improve the clustering process compared to some recent algorithms.


2020 ◽  
Vol 75 (9-10) ◽  
pp. 597-611
Author(s):  
Christian Beyer ◽  
Maik Büttner ◽  
Vishnu Unnikrishnan ◽  
Miro Schleicher ◽  
Eirini Ntoutsi ◽  
...  

Abstract Traditional active learning tries to identify instances for which the acquisition of the label increases model performance under budget constraints. Less research has been devoted to the task of actively acquiring feature values, whereupon both the instance and the feature must be selected intelligently and even less to a scenario where the instances arrive in a stream with feature drift. We propose an active feature acquisition strategy for data streams with feature drift, as well as an active feature acquisition evaluation framework. We also implement a baseline that chooses features randomly and compare the random approach against eight different methods in a scenario where we can acquire at most one feature at the time per instance and where all features are considered to cost the same. Our initial experiments on 9 different data sets, with 7 different degrees of missing features and 8 different budgets show that our developed methods outperform the random acquisition on 7 data sets and have a comparable performance on the remaining two.


2011 ◽  
Vol 2 (4) ◽  
pp. 12-23 ◽  
Author(s):  
Rekha Kandwal ◽  
Prerna Mahajan ◽  
Ritu Vijay

This paper revisits the problem of active learning and decision making when the cost of labeling incurs cost and unlabeled data is available in abundance. In many real world applications large amounts of data are available but the cost of correctly labeling it prohibits its use. In such cases, active learning can be employed. In this paper the authors propose rough set based clustering using active learning approach. The authors extend the basic notion of Hamming distance to propose a dissimilarity measure which helps in finding the approximations of clusters in the given data set. The underlying theoretical background for this decision is rough set theory. The authors have investigated our algorithm on the benchmark data sets from UCI machine learning repository which have shown promising results.


2016 ◽  
Vol 72 (6) ◽  
pp. 696-703 ◽  
Author(s):  
Julian Henn

An alternative measure to the goodness of fit (GoF) is developed and applied to experimental data. The alternative goodness of fit squared (aGoFs) demonstrates that the GoF regularly fails to provide evidence for the presence of systematic errors, because certain requirements are not met. These requirements are briefly discussed. It is shown that in many experimental data sets a correlation between the squared residuals and the variance of observed intensities exists. These correlations corrupt the GoF and lead to artificially reduced values in the GoF and in the numerical value of thewR(F2). Remaining systematic errors in the data sets are veiled by this mechanism. In data sets where these correlations do not appear for the entire data set, they often appear for the decile of largest variances of observed intensities. Additionally, statistical errors for the squared goodness of fit, GoFs, and the aGoFs are developed and applied to experimental data. This measure shows how significantly the GoFs and aGoFs deviate from the ideal value one.


2021 ◽  
Vol 15 (1) ◽  
pp. 99-114
Author(s):  
Ankit Agrawal ◽  
Sarsij Tripathi ◽  
Manu Vardhan

Active learning approach is well known method for labeling huge un-annotated dataset requiring minimal effort and is conducted in a cost efficient way. This approach selects and adds most informative instances to the training set iteratively such that the performance of learner improves with each iteration. Named entity recognition (NER) is a key task for information extraction in which entities present in sequences are labeled with correct class. The traditional query sampling strategies for the active learning only considers the final probability value of the model to select the most informative instances. In this paper, we have proposed a new active learning algorithm based on the hybrid query sampling strategy which also considers the sentence similarity along with the final probability value of the model and compared them with four other well known pool based uncertainty query sampling strategies based active learning approaches for named entity recognition (NER) i.e. least confident sampling, margin of confidence sampling, ratio of confidence sampling and entropy query sampling strategies. The experiments have been performed over three different biomedical NER datasets of different domains and a Spanish language NER dataset. We found that all the above approaches are able to reach to the performance of supervised learning based approach with much less annotated data requirement for training in comparison to that of supervised approach. The proposed active learning algorithm performs well and further reduces the annotation cost in comparison to the other sampling strategies based active algorithm in most of the cases.


Sign in / Sign up

Export Citation Format

Share Document