scholarly journals Brightness Compensation for GF-3 SAR Images Based on Cycle-Consistent Adversarial Networks

2021 ◽  
Vol 50 (4) ◽  
pp. 706-721
Author(s):  
Shaofeng Lin ◽  
Zengguo Sun ◽  
Xuejun Peng ◽  
Lin Ni ◽  
Genfeng Wen ◽  
...  

GF-3 is the first C-Band full-polarimetric synthetic aperture radar (SAR) satellite with a space resolution up to 1m in China. The uneven brightness of SAR images is a problem when using GF-3 images, which makes it difficult to use and produce SAR images. In this paper, a brightness compensation method is proposed for GF-3 SAR images with unbalanced brightness in some areas based on a deep learning model named Cycle-Consistent Adversarial Networks (CycleGAN). The proposed method makes the image brightness relatively consistent, and it is compared with the MASK dodging algorithm, Wallis dodging algorithm and histogram equalization in terms of the profiles, brightness mean, standard deviation, and average gradient. Results of brightness compensation show that, the proposed method makes the inner brightness differences smaller, and the image quality is obviously improved, which provides even brightness image for subsequent applications, and has great practical significance.

2022 ◽  
Vol 14 (2) ◽  
pp. 264
Author(s):  
Dawei Wang ◽  
Jianhua Wan ◽  
Shanwei Liu ◽  
Yanlong Chen ◽  
Muhammad Yasir ◽  
...  

Oil spill pollution at sea causes significant damage to marine ecosystems. Quad-polarimetric Synthetic Aperture Radar (SAR) has become an essential technology since it can provide polarization features for marine oil spill detection. Using deep learning models based on polarimetric features, oil spill detection can be achieved. However, there is insufficient feature extraction due to model depth, small reception field lend due to loss of target information, and fixed hyperparameter for models. The effect of oil spill detection is still incomplete or misclassified. To solve the above problems, we propose an improved deep learning model named BO-DRNet. The model can obtain a more sufficiently and fuller feature by ResNet-18 as the backbone in encoder of DeepLabv3+, and Bayesian Optimization (BO) was used to optimize the model’s hyperparameters. Experiments were conducted based on ten prominent polarimetric features were extracted from three quad-polarimetric SAR images obtained by RADARSAT-2. Experimental results show that compared with other deep learning models, BO-DRNet performs best with a mean accuracy of 74.69% and a mean dice of 0.8551. This paper provides a valuable tool to manage upcoming disasters effectively.


2021 ◽  
Vol 13 (7) ◽  
pp. 1236
Author(s):  
Yuanjun Shu ◽  
Wei Li ◽  
Menglong Yang ◽  
Peng Cheng ◽  
Songchen Han

Convolutional neural networks (CNNs) have been widely used in change detection of synthetic aperture radar (SAR) images and have been proven to have better precision than traditional methods. A two-stage patch-based deep learning method with a label updating strategy is proposed in this paper. The initial label and mask are generated at the pre-classification stage. Then a two-stage updating strategy is applied to gradually recover changed areas. At the first stage, diversity of training data is gradually restored. The output of the designed CNN network is further processed to generate a new label and a new mask for the following learning iteration. As the diversity of data is ensured after the first stage, pixels within uncertain areas can be easily classified at the second stage. Experiment results on several representative datasets show the effectiveness of our proposed method compared with several existing competitive methods.


2020 ◽  
Vol 10 (21) ◽  
pp. 7751
Author(s):  
Seong-Jae Hong ◽  
Won-Kyung Baek ◽  
Hyung-Sup Jung

Synthetic aperture radar (SAR) images have been used in many studies for ship detection because they can be captured without being affected by time and weather. In recent years, the development of deep learning techniques has facilitated studies on ship detection in SAR images using deep learning techniques. However, because the noise from SAR images can negatively affect the learning of the deep learning model, it is necessary to reduce the noise through preprocessing. In this study, deep learning vessel detection was performed using preprocessed SAR images, and the effects of the preprocessing of the images on deep learning vessel detection were compared and analyzed. Through the preprocessing of SAR images, (1) intensity images, (2) decibel images, and (3) intensity difference and texture images were generated. The M2Det object detection model was used for the deep learning process and preprocessed SAR images. After the object detection model was trained, ship detection was performed using test images. The test results are presented in terms of precision, recall, and average precision (AP), which were 93.18%, 91.11%, and 89.78% for the intensity images, respectively, 94.16%, 94.16%, and 92.34% for the decibel images, respectively, and 97.40%, 94.94%, and 95.55% for the intensity difference and texture images, respectively. From the results, it can be found that the preprocessing of the SAR images can facilitate the deep learning process and improve the ship detection performance. The results of this study are expected to contribute to the development of deep learning-based ship detection techniques in SAR images in the future.


Author(s):  
J. Susaki

In this paper, we analyze probability density functions (PDFs) of scatterings derived from fully polarimetric synthetic aperture radar (SAR) images for improving the accuracies of estimated urban density. We have reported a method for estimating urban density that uses an index <i>T</i><sub><i>v</i>+<i>c</i></sub> obtained by normalizing the sum of volume and helix scatterings <i>P</i><sub><i>v</i>+<i>c</i></sub>. Validation results showed that estimated urban densities have a high correlation with building-to-land ratios (Kajimoto and Susaki, 2013b; Susaki et al., 2014). While the method is found to be effective for estimating urban density, it is not clear why <i>T</i><sub><i>v</i>+<i>c</i></sub> is more effective than indices derived from other scatterings, such as surface or double-bounce scatterings, observed in urban areas. In this research, we focus on PDFs of scatterings derived from fully polarimetric SAR images in terms of scattering normalization. First, we introduce a theoretical PDF that assumes that image pixels have scatterers showing random backscattering. We then generate PDFs of scatterings derived from observations of concrete blocks with different orientation angles, and from a satellite-based fully polarimetric SAR image. The analysis of the PDFs and the derived statistics reveals that the curves of the PDFs of <i>P</i><sub><i>v</i>+<i>c</i></sub> are the most similar to the normal distribution among all the scatterings derived from fully polarimetric SAR images. It was found that <i>T</i><sub><i>v</i>+<i>c</i></sub> works most effectively because of its similarity to the normal distribution.


2021 ◽  
Vol 13 (5) ◽  
pp. 1011
Author(s):  
Zengguo Sun ◽  
Hui Geng ◽  
Zheng Lu ◽  
Rafał Scherer ◽  
Marcin Woźniak

Road segmentation for synthetic aperture radar (SAR) images is of great practical significance. With the rapid development and wide application of SAR imaging technology, this problem has attracted much attention. At present, there are numerous road segmentation methods. This paper analyzes and summarizes the road segmentation methods for SAR images over the years. Firstly, the traditional road segmentation algorithms are classified according to the degree of automation and the principle. Advantages and disadvantages are introduced successively for each traditional method. Then, the popular segmentation methods based on deep learning in recent years are systematically introduced. Finally, novel deep segmentation neural networks based on the capsule paradigm and the self-attention mechanism are forecasted as future research for SAR images.


Sign in / Sign up

Export Citation Format

Share Document