scholarly journals Turfgrass Growth, Quality, and Reflective Heat Load in Response to Deficit Irrigation Practices

10.5772/15064 ◽  
2011 ◽  
Author(s):  
Benjamin Wherley
2016 ◽  
Vol 203 ◽  
pp. 69-85 ◽  
Author(s):  
Pascual Romero ◽  
José García García ◽  
Jose Ignacio Fernández-Fernández ◽  
Rocío Gil Muñoz ◽  
Francisco del Amor Saavedra ◽  
...  

Agronomy ◽  
2020 ◽  
Vol 10 (11) ◽  
pp. 1640
Author(s):  
Ali Montazar ◽  
Oli Bachie ◽  
Dennis Corwin ◽  
Daniel Putnam

Irrigation management practices that reduce water use with acceptable impacts on yield are important strategies to cope with diminished water supplies and generate new sources of water to transfer for other agricultural uses, and urban and environmental demands. This study was intended to assess the effects of moderate water deficits, with the goal of maintaining robust alfalfa (Medicago sativa L.) yields, while conserving on-farm water. Data collection and analysis were conducted at four commercial fields over an 18-month period in the Palo Verde Valley, California, from 2018–2020. A range of deficit irrigation strategies, applying 12.5–33% less irrigation water than farmers’ normal irrigation practices was evaluated, by eliminating one to three irrigation events during selected summer periods. The cumulative actual evapotranspiration measured using the residual of energy balance method across the experimental sites, ranged between 2,031 mm and 2.202 mm, over a 517-day period. An average of 1.7 and 1.0 Mg ha−1 dry matter yield reduction was observed under 33% and 22% less applied water, respectively, when compared to the farmers’ normal irrigation practice in silty loam soils. The mean dry matter yield decline varied from 0.4 to 0.9 Mg ha−1 in a clay soil and from 0.3 to 1.0 Mg ha−1 in a sandy loam soil, when irrigation water supply was reduced to 12.5% and 25% of normal irrigation levels, respectively. A wide range of conserved water (83 to 314 mm) was achieved following the deficit irrigation strategies. Salinity assessment indicated that salt buildup could be managed with subsequent normal irrigation practices, following deficit irrigations. Continuous soil moisture sensing verified that soil moisture was moderately depleted under deficit irrigation regimes, suggesting that farmers might confidently refill the soil profile following normal practices. Stand density was not affected by these moderate water deficits. The proposed deficit irrigation strategies could provide a reliable amount of water and sustain the economic viability of alfalfa production. However, data from multiple seasons are required to fully understand the effectiveness as a water conservation tool and the long-term impacts on the resilience of agricultural systems.


HortScience ◽  
2005 ◽  
Vol 40 (4) ◽  
pp. 1095A-1095
Author(s):  
Luis R. Valenzuela ◽  
Denise Neilsen ◽  
Gerry Neilsen ◽  
David Eissenstat

New irrigation practices using controlled soil water deficits offer the opportunity of reducing tree vegetative growth and enhancing fruit quality without decreasing fruit size or yield. We tested partial root zone drying (PRD) and deficit irrigation in `Golden Delicious' trees on M9 rootstock, at Summerland, B.C., Canada. There were four treatments: full irrigation (100% daily ET replacement), both sides irrigation (50%daily ET replacement), deficit irrigation (1 side, 50% daily ET replacement) and PRD (alternating sides, 50% daily ET replacement). The purpose of this study was to determine how deficit irrigation and PRD affect above- and below-ground physiology of apple trees where the amount of irrigation was the same. Soil water content, stem water potential, stomatal conductance and transpiration were significantly higher for deficit irrigation than PRD irrigation (P < 0.05) for both years (2003 and 2004). Root dynamics varied among years. For both years, root production was higher in trees under PRD than in trees under deficit irrigation. Root survivorship was significantly higher for trees exposed to PRD treatment than those exposed to deficit irrigation treatment in 2003 (P < 0.0003), but not in 2004 (P > 0.662). Stem growth, fruit yield, and fruit quality were generally not affected by treatments in 2003. In 2004, however, fruit yield was 37% higher in deficit irrigation than in PRD (P < 0.05). Soluble solids and sugar: acid ratio did not differ between these two treatments. For conditions where the amount of irrigation applied was the same, our results suggest that PRD may be less effective than deficit irrigation.


Water ◽  
2019 ◽  
Vol 11 (11) ◽  
pp. 2340 ◽  
Author(s):  
Mohamed Galal Eltarabily ◽  
John M. Burke ◽  
Khaled M. Bali

Nitrogen (N) accounts for more than 80% of the total mineral nutrients absorbed by plants and it is the most widely limiting element for crop production, particularly under water deficit conditions. For a comprehensive understanding of sunflower Helianthus annuus N uptake under deficit irrigation conditions, experimental and numerical simulation studies were conducted for full (100% ETC) and deficit (65% ETC) irrigation practices under the semi-arid conditions of the Imperial Valley, California, USA. Plants were established with overhead sprinkler irrigation before transitioning to subsurface drip irrigation (SDI). Based on pre-plant soil N testing, 39 kg ha−1 of N and 78 kg ha−1 of P were applied as a pre-plant dry fertilizer in the form of monoammonium phosphate (MAP) and an additional application of 33 kg ha−1 of N from urea ammonium nitrate (UAN-32) liquid fertilizer was made during the growing season. Soil samples at 15-cm depth increments to 1.2 m (8 layers, 15 cm each) were collected prior to planting and at three additional time points from two locations each in the full and deficit irrigation treatments. We used HYDRUS/2D for the simulation in this study and the model was calibrated for the soil moisture parameters (θs and θr), the rate constant factors of nitrification (the sensitive parameter) in the liquid and solid states (μw,3, and μs,3). The HYDRUS model predicted cumulative root water uptake fluxes of 533 mm and 337 mm for the 100% ETC and 65% ETC, respectively. The simulated cumulative drainage depths were 23.7 mm and 20.4 mm for the 100% ETC and 65% ETC which represented only 4% and 5% of the applied irrigation water, respectively. The soil wetting profile after SDI irrigation was mostly around emitters for the last four SDI irrigation events, while the maximum values of soil moisture in the top 30 cm of the soil profile were 0.262 cm3 cm−3 and 0.129 cm3 cm−3 for 100% ETC and 65% ETC, respectively. The 16.5 kg ha−1 (NH2)2CO (50% of the total N) that was applied during the growing season was completely hydrolyzed to NH4+ within 7 days of application, while 4.36 mg cm−1 cumulative decay was achieved by the end of the 98-day growing season. We found that 86% of NH4+ (74.25 mg cm−1) was nitrified to NO3− while 14% remained in the top 50 cm of the soil profile. The denitrification and free drainage of NO3− were similar for 100% ETC and 65% ETC, and the maximum nitrate was drained during the sprinkler irrigation period. By the end of the growing season, 30.8 mg cm−1 of nitrate was denitrified to N2 and the reduction of nitrate plant uptake was 17.1% for the deficit irrigation section as compared to the fully irrigated side (19.44 mg cm−1 vs. 16.12 mg cm−1). This reduction in N uptake due to deficit irrigation on sunflower could help farmers conserve resources by reducing the amount of fertilizer required if deficit irrigation practices are implemented due to the limited availability of irrigation water.


2021 ◽  
Author(s):  
Lee Kalcsits ◽  
Nadia Valverdi ◽  
Michelle Reid

Deficit irrigation is used to reduce vegetative vigor, increase fruit quality, and conserve water resources. However, physiological responses to deficit irrigation can vary depending on soil and environmental conditions. Although physiological measurements are often made at single points in time, responses are often longer lasting and a measurement that integrates responses over time would have greater value in assessing the effectiveness of deficit irrigation practices. Carbon isotope composition has long been used as a proxy measurement for water-use efficiency, stomatal conductance, and carbon dioxide exchange with the atmosphere and is heavily influenced by water status. Potentially, fruit, leaves, or other tissues could be used as samples for carbon isotope measurements. However, it is not well known how irrigation practices can influence both source and sink tissue carbon isotope composition in perennial systems. Here, we used two experiments to determine how irrigation timing affects both source and sink δ13C at the end of the season. Irrigation limitations were initiated after bloom for either the whole season or for early, middle, or late season and compared to a well-watered control. For both experiments, leaves were poor indicators of irrigation deficit treatments that were applied during the season. There were no significant differences in leaf δ13C between deficit treatments and the control for both experiments. However, all sink tissues including roots and stems in experiment one for both years and for fruits in experiment two for both years were significantly more enriched compared to the well-watered control. Environmental conditions during the season also appeared to influence the magnitude of difference inδ13Cbetween deficit irrigation treatments and the control. These results indicate that the use of sink tissues are more sensitive for measuring signals associated with in-season water deficits. Carbon isotope composition can be an effective proxy to measure efficacy of irrigation treatments at the physiological level.


Sign in / Sign up

Export Citation Format

Share Document