scholarly journals iPS Cells: Born-Again Stem Cells for Biomedical Applications

Author(s):  
Ambrose Jon ◽  
Vimal Selvaraj
2018 ◽  
Vol 15 (2) ◽  
pp. 286-313 ◽  
Author(s):  
Manash P. Borgohain ◽  
Krishna Kumar Haridhasapavalan ◽  
Chandrima Dey ◽  
Poulomi Adhikari ◽  
Rajkumar P. Thummer

RSC Advances ◽  
2015 ◽  
Vol 5 (104) ◽  
pp. 85756-85766 ◽  
Author(s):  
E. Jäger ◽  
R. K. Donato ◽  
M. Perchacz ◽  
A. Jäger ◽  
F. Surman ◽  
...  

Poly(alkene succinates) are promising materials for specialized medical devices and tissue engineering, presenting intrinsic properties, such as; fungal biofilm inhibition, biocompatibility and stem cells controlled growth promotion.


2012 ◽  
Vol 111 (suppl_1) ◽  
Author(s):  
Eneda Hoxha ◽  
Erin Lambers ◽  
Veronica Ramirez ◽  
Prasanna Krishnamurthy ◽  
Suresh Verma ◽  
...  

Cardiomyocytes derived from embryonic and induced pluripotent stem cells (ES/iPS) provide an excellent source for cell replacement therapies following myocardial ischemia. However, some of the obstacles in the realization of the full potential of iPS/ES cells arise from incomplete and poorly understood molecular mechanisms and epigenetic modifications that govern their cardiovascular specific differentiation. We identified Histone Deacetylase 1 (HDAC1) as a crucial regulator in early differentiation of mES and iPS cells. We propose a novel pathway in which HDAC1 regulates cardiovascular differentiation by regulating SOX17 which in turn regulates BMP2 signaling in differentiating pluripotent cells. Utilizing stable HDAC1 knock-down (HDAC1-KD) cell lines, we report an essential role for HDAC1 in deacetylating regulatory regions of pluripotency-associated genes during early cardiovascular differentiation. HDAC1-KD cells show severely repressed cardiomyocyte differentiation potential. We propose a novel HDAC1-BMP2-SOX17 dependent pathway through which deacetylation of pluripotency associated genes leads to their suppression and allows for early cardiovascular-associated genes to be expressed and differentiation to occur. Furthermore, we show that HDAC1 affects DNA methylation both during pluripotency and differentiation and plays a crucial, non-redundant role in cardiovascular specific differentiation and cardiomyocyte maturation. Our data elucidates important differences between ES and iPS HDAC1-KD cells that affect their ability to differentiate into cardiovascular lineages. As varying levels of chromatin modifying enzymes are likely to exist in patient derived iPS cells, understanding the molecular circuitry of these enzymes in ES and iPS cells is critical for their potential therapeutic applications in regenerative medicine. Further research in the molecular mechanisms involved in this process will greatly aid our understanding of the epigenetic circuitry of pluripotency and differentiation in pluripotent cells.


Cells ◽  
2018 ◽  
Vol 7 (12) ◽  
pp. 261 ◽  
Author(s):  
Sergey Sinenko ◽  
Elena Skvortsova ◽  
Mikhail Liskovykh ◽  
Sergey Ponomartsev ◽  
Andrey Kuzmin ◽  
...  

AlphoidtetO-type human artificial chromosome (HAC) has been recently synthetized as a novel class of gene delivery vectors for induced pluripotent stem cell (iPSC)-based tissue replacement therapeutic approach. This HAC vector was designed to deliver copies of genes into patients with genetic diseases caused by the loss of a particular gene function. The alphoidtetO-HAC vector has been successfully transferred into murine embryonic stem cells (ESCs) and maintained stably as an independent chromosome during the proliferation and differentiation of these cells. Human ESCs and iPSCs have significant differences in culturing conditions and pluripotency state in comparison with the murine naïve-type ESCs and iPSCs. To date, transferring alphoidtetO-HAC vector into human iPSCs (hiPSCs) remains a challenging task. In this study, we performed the microcell-mediated chromosome transfer (MMCT) of alphoidtetO-HAC expressing the green fluorescent protein into newly generated hiPSCs. We used a recently modified MMCT method that employs an envelope protein of amphotropic murine leukemia virus as a targeting cell fusion agent. Our data provide evidence that a totally artificial vector, alphoidtetO-HAC, can be transferred and maintained in human iPSCs as an independent autonomous chromosome without affecting pluripotent properties of the cells. These data also open new perspectives for implementing alphoidtetO-HAC as a gene therapy tool in future biomedical applications.


2011 ◽  
Vol 71 ◽  
pp. e332
Author(s):  
Hiroko Shimada ◽  
Yohei Okada ◽  
Ikuo Tomioka ◽  
Erika Sasaki ◽  
Masaya Nakamura ◽  
...  

2014 ◽  
Vol 44 (2) ◽  
pp. 559-570 ◽  
Author(s):  
Amirbahman Rahimzadeh ◽  
Fatemeh Sadat Tabatabaei Mirakabad ◽  
Aliakbar Movassaghpour ◽  
Karim Shamsasenjan ◽  
Saber Kariminekoo ◽  
...  

2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Juan Du ◽  
Yanning Xu ◽  
Saki Sasada ◽  
Aung Ko Ko Oo ◽  
Ghmkin Hassan ◽  
...  

2019 ◽  
Vol 20 (8) ◽  
pp. 1807 ◽  
Author(s):  
Aleksandra Musiał-Wysocka ◽  
Marta Kot ◽  
Maciej Sułkowski ◽  
Bogna Badyra ◽  
Marcin Majka

The properties of mesenchymal stem cells (MSCs), especially their self-renewal and ability to differentiate into different cell lines, are widely discussed. Considering the fact that MSCs isolated from perinatal tissues reveal higher differentiation capacity than most adult MSCs, we examined mesenchymal stem cells isolated from Wharton’s jelly of umbilical cord (WJ-MSCs) in terms of pluripotency markers expression. Our studies showed that WJ-MSCs express some pluripotency markers—such as NANOG, OCT-4, and SSEA-4—but in comparison to iPS cells expression level is significantly lower. The level of expression can be raised under hypoxic conditions. Despite their high proliferation potential and ability to differentiate into different cells type, WJ-MSCs do not form tumors in vivo, the major caveat of iPS cells. Owing to their biological properties, high plasticity, proliferation capacity, and ease of isolation and culture, WJ-MSCs are turning out to be a promising tool of modern regenerative medicine.


Sign in / Sign up

Export Citation Format

Share Document