scholarly journals Evapotranspiration and Water Management for Crop Production

Author(s):  
Andre Pereira ◽  
Luiz Pires
2018 ◽  
Vol 43 (4) ◽  
pp. 669-690
Author(s):  
MS Rahman ◽  
M Khatun ◽  
ML Rahman ◽  
SR Haque

The study attempts to determine the training needs of the farmers emphasizing nine selected major thematic areas. Under each major component, specific and relevant training needs item were collected and systematically incorporated into an interview schedule and administered in terms of frequency of training imparted. Four districts were purposively selected for the study and a total of eighty farmers were randomly selected from four districts. Primary data were analyzed using descriptive statistics. The study revealed that more male was involved in farming and 45% farmers were middle age category (30-39 years). Majority of the farmers completed primary level of education compared to other categories and family size of more than half (60 %) of the respondents was three. Majority number of respondents (57%) had more than 10 years farming experience. A small number of farmers (8.75%) had owned agricultural land and 45% had land between 0.50- 1 hectare. More than 75% of annual gross income of 57.50% farmers came from agricultural activities. More than half (55%) of the respondents collected information on crop and its varieties by own attempt while about 34% was informed from seed seller or dealer. Farmers in Chattogram district had first priority to get training on integrated pest and diseases management, production of bio control agents and bio pesticides, marketing and transportation. Water management, integrated pest and disease management, vermi-compost production, marketing and transportation ranked first in Khagrachori district. The areas of priority for training in Rajshahi district were production and management technology, processing and value addition, marketing and transportation, integrated pest and disease management, water management and vermi-compost production. Training on integrated pest and disease management, bio-control of pests and diseases, production of bio control agents and bio pesticides, production of off-season vegetables, vermi-compost production, marketing and transportation were most emphasized by the respondents in Rangpur district. Respondents defined identification of adulterated fertilizer, insecticide and pesticide application, disease and insects of mango varieties and fruit bagging system of mango as very good type of training. The study concluded that there is an urgent need to design regular training programs in identified thematic areas to fulfill the knowledge gap among the farmers of Bangladesh.Bangladesh J. Agril. Res. 43(4): 669-690, December 2018


HortScience ◽  
2014 ◽  
Vol 49 (5) ◽  
pp. 662-666
Author(s):  
Lusheng Zeng ◽  
Jiayang Liu ◽  
Robert N. Carrow ◽  
Paul L. Raymer ◽  
Qingguo Huang

Organic coatings on sand particles can cause soil water repellency (SWR) where a soil does not spontaneously wet; this leads to challenges in water management and crop production. In laboratory studies, we evaluated a novel approach using direct application of 10 enzymes at three (low, medium, high) dosages to remediate SWR on two sand turfgrass soils in a 3-day incubation study and a second study at high dosage with 1-day incubation. A soil:solution ratio of 1:1 (10 g soil and 10 mL solution) was used and a deionized water control included. For Soil 7, a very strongly hydrophobic soil from a localized dry spot turfgrass area with a water drop penetration time (WDPT) of 7440 seconds (untreated) and 332 to 338 seconds (water-treated), the high dosage rates of laccase, chitinase, and protease at 1 and 3 days incubation resulted in WDPT of less than 60 seconds (i.e., hydrophilic soil). Pectinase exhibited similar results only in the 3-day incubation study. On the strongly hydrophobic Soil 21 (WDPT of 655 seconds untreated; 94 to 133 water-treated) from the dry area of a fairy ring-affected area on a turfgrass site, high dosages of chitinase, laccase, pectinase, and protease reduced WDPT to less than 60 seconds in both studies; and medium dosage rates were also effective for all but protease in the 3-day incubation study. Each of the four most effective enzymes for reducing WDPT, noted previously, demonstrated a significant exponential or logarithmic relationship between decreasing WDPT and increasing enzyme dosage. Further studies in field situations will be required to determine enzyme effectiveness on SWR and water management.


2015 ◽  
Vol 25 (4) ◽  
pp. 471-476 ◽  
Author(s):  
Carolyn DeMoranville

The american cranberry (Vaccinium macrocarpon) is a wetland plant native to North America. The plant is adapted to sandy, nutrient-poor, low pH soils and thus, like blueberry (Vaccinium sp.), its nutritional requirements are low compared with many other perennial fruit crops. Research conducted over the past 30 years has defined the annual requirements for nitrogen [N (20–60 lb/acre)], phosphorus [P (<20 lb/acre)], and potassium (40–120 lb/acre) based on tissue testing, plant growth demands, potential for remobilization, and determination of removal in the crop. These three nutrient elements are those most commonly applied to the crop in fertilizers. However, much of the work on nutrient rate requirements was conducted on native cultivars and there is an expectation that requirements of newer hybrid cultivars are greater. In Massachusetts, cranberries are grown in coastal watersheds and often depend on small lakes as their water source for irrigation, harvest, and winter flooding. Since cranberry production is heavily dependent on water use, the interaction of nutrient management and water management has become a primary focus area for research and extension, particularly for N and P, the nutrient elements most frequently associated with environmental pollution. Recent preliminary research examining cranberry farms with varied configurations (e.g., water passes through the bog and exits via a long channel, water recirculates back into the supply water body) has indicated that the cranberry bogs may act as either a source or sink for N depending on configuration and management activities. In a study of cranberry farms where P use was reduced to an average of <10 lb/acre, P concentration in harvest flood water declined by as much as 85% while crop production was sustained. Site variation in output of N and P in cranberry drainage and flood waters indicates the need for further research into the variables that control these processes, including soil types, site hydrology, nutrient application rates and forms, and water-management activities.


Agronomy ◽  
2019 ◽  
Vol 9 (2) ◽  
pp. 87 ◽  
Author(s):  
Jasmine Neupane ◽  
Wenxuan Guo

Agriculture faces the challenge of feeding a growing population with limited or depleting fresh water resources. Advances in irrigation systems and technologies allow site-specific application of irrigation water within the field to improve water use efficiency or reduce water usage for sustainable crop production, especially in arid and semi-arid regions. This paper discusses recent development of variable-rate irrigation (VRI) technologies, data and information for VRI application, and impacts of VRI, including profitability using this technology, with a focus on agronomic factors in precision water management. The development in sprinkler systems enabled irrigation application with greater precision at the scale of individual nozzle control. Further research is required to evaluate VRI prescription maps integrating different soil and crop characteristics in different environments. On-farm trials and whole-field studies are needed to provide support information for practical VRI applications. Future research also needs to address the adjustment of the spatial distribution of prescription zones in response to temporal variability in soil water status and crop growing conditions, which can be evaluated by incorporating remote and proximal sensing data. Comprehensive decision support tools are required to help the user decide where to apply how much irrigation water at different crop growth stages to optimize water use and crop production based on the regional climate conditions and cropping systems.


2020 ◽  
Vol 20 ◽  
pp. 01002
Author(s):  
Arthanur Rifqi Hidayat ◽  
Arifin Fahmi

Land reclamation on acid sulfate soil is a process of improving acid sulfate soil to make them suitable for more productive use, such as increasing crop production. These efforts (land clearing and management, as well as water management system) on acid sulfate soils had increased sulfidic material oxidation, followed by soil acidification, the rise of toxic metal solubility, and basic cation leaching. Mitigation efforts are required to prevent these impacts such as proper water management, utilization of organic matter, adaptive varieties, and optimized technology of fertilization. These mitigations must be carefully done so that they have a minimum negative impact on soil and crop.


Sign in / Sign up

Export Citation Format

Share Document