scholarly journals Construction of a Vertical Displacement Service Robot with Vacuum Cups

Author(s):  
Nicolae Alexandrescu ◽  
Tudor Catalin ◽  
Despina Duminica ◽  
Constantin Udrea ◽  
Georgeta Ionascu ◽  
...  



2020 ◽  
Author(s):  
B. S. Sathish ◽  
Ganesan P ◽  
Dola Sanjay.S ◽  
A Ranganayakulu ◽  
Madamala Revanth ◽  
...  


Author(s):  
Brendan L Pinto ◽  
Clark R Dickerson

Employing an arched back posture during the bench press exercise is increasingly popular. Vertical displacement of the barbell is commonly believed to be the key difference influencing strength performance between an arched and flat back bench press technique. However, comparisons between these back postures using a free weight barbell are lacking. Directly comparing performance between each posture is confounded by many variables such as proficiency and fatigue. This investigation aimed to investigate whether changing back posture alone can influence barbell kinematics, to indirectly assess potential performance differences. Twenty males performed one repetition of the bench press exercise using either an arched or flat back posture, at 25%, 50% and 75% of their one repetition maximum, in a repeated measures study design. Statistical significance was considered at p < 0.05. Changing back posture alone, reduced vertical displacement (approximately 11% average difference across all load conditions) and barbell to glenohumeral joint moment arm (approximately 20% difference) in the arched posture compared to the flat posture. These changes occurred without any specific cueing of the barbell motion and may increase the potential for lifting higher loads and decrease cumulative joint exposure. Additional cueing and training may be required to maximize the mechanical advantage available with each back posture. The arched posture appears to have an increased potential for further improvements in vertical displacement and moment arm through specific cueing. Future comparisons should consider if each back posture’s potential mechanical advantage has been maximized when assessing differences between techniques.



Author(s):  
Paul Leon Göllner ◽  
Jan Oliver Eisermann ◽  
Catalina Balbis ◽  
Ivan A. Petrinovic ◽  
Ulrich Riller

AbstractThe Southern Andes are often viewed as a classic example for kinematic partitioning of oblique plate convergence into components of continental margin-parallel strike-slip and transverse shortening. In this regard, the Liquiñe-Ofqui Fault Zone, one of Earth’s most prominent intra-arc deformation zones, is believed to be the most important crustal discontinuity in the Southern Andes taking up margin-parallel dextral strike-slip. Recent structural studies, however, are at odds with this simple concept of kinematic partitioning, due to the presence of margin-oblique and a number of other margin-parallel intra-arc deformation zones. However, knowledge on the extent of such zones in the Southern Andes is still limited. Here, we document traces of prominent structural discontinuities (lineaments) from the Southern Andes between 39° S and 46° S. In combination with compiled low-temperature thermochronology data and interpolation of respective exhumation rates, we revisit the issue of kinematic partitioning in the Southern Andes. Exhumation rates are maximal in the central parts of the orogen and discontinuity traces, trending predominantly N–S, WNW–ESE and NE–SW, are distributed across the entire width of the orogen. Notably, discontinuities coincide spatially with large gradients in Neogene exhumation rates and separate crustal domains characterized by uniform exhumation. Collectively, these relationships point to significant components of vertical displacement on these discontinuities, in addition to horizontal displacements known from published structural studies. Our results agree with previously documented Neogene shortening in the Southern Andes and indicate orogen-scale transpression with maximal vertical extrusion of rocks in the center of the transpression zone. The lineament and thermochronology data call into question the traditional view of kinematic partitioning in the Southern Andes, in which deformation is focused on the Liquiñe-Ofqui Fault Zone.



Sensors ◽  
2021 ◽  
Vol 21 (14) ◽  
pp. 4842
Author(s):  
Waldemar Kamiński

Nowadays, hydrostatic levelling is a widely used method for the vertical displacements’ determinations of objects such as bridges, viaducts, wharfs, tunnels, high buildings, historical buildings, special engineering objects (e.g., synchrotron), sports and entertainment halls. The measurements’ sensors implemented in the hydrostatic levelling systems (HLSs) consist of the reference sensor (RS) and sensors located on the controlled points (CPs). The reference sensor is the one that is placed at the point that (in theoretical assumptions) is not a subject to vertical displacements and the displacements of controlled points are determined according to its height. The hydrostatic levelling rule comes from the Bernoulli’s law. While using the Bernoulli’s principle in hydrostatic levelling, the following components have to be taken into account: atmospheric pressure, force of gravity, density of liquid used in sensors places at CPs. The parameters mentioned above are determined with some mean errors that influence on the accuracy assessment of vertical displacements. In the subject’s literature, there are some works describing the individual accuracy analyses of the components mentioned above. In this paper, the author proposes the concept of comprehensive determination of mean error of vertical displacement (of each CPs), calculated from the mean errors’ values of components dedicated for specific HLS. The formulas of covariances’ matrix were derived and they enable to make the accuracy assessment of the calculations’ results. The author also presented the subject of modelling of vertical displacements’ gained values. The dependences, enabling to conduct the statistic tests of received model’s parameters, were implemented. The conducted tests make it possible to verify the correctness of used theoretical models of the examined object treated as the rigid body. The practical analyses were conducted for two simulated variants of sensors’ connections in HLS. Variant no. I is the sensors’ serial connection. Variant no. II relies on the connection of each CPs with the reference sensor. The calculations’ results show that more detailed value estimations of the vertical displacements can be obtained using variant no. II.



2021 ◽  
Author(s):  
Kate Letheren ◽  
Jolanda Jetten ◽  
Jonathan Roberts ◽  
Jared Donovan
Keyword(s):  


2021 ◽  
Vol 18 (3) ◽  
pp. 172988142110121
Author(s):  
David Portugal ◽  
André G Araújo ◽  
Micael S Couceiro

To move out of the lab, service robots must reveal a proven robustness so they can be deployed in operational environments. This means that they should function steadily for long periods of time in real-world areas under uncertainty, without any human intervention, and exhibiting a mature technology readiness level. In this work, we describe an incremental methodology for the implementation of an innovative service robot, entirely developed from the outset, to monitor large indoor areas shared by humans and other obstacles. Focusing especially on the reliability of the fundamental localization system of the robot in the long term, we discuss all the incremental software and hardware features, design choices, and adjustments conducted, and show their impact on the performance of the robot in the real world, in three distinct 24-h long trials, with the ultimate goal of validating the proposed mobile robot solution for indoor monitoring.



Sign in / Sign up

Export Citation Format

Share Document