scholarly journals Silk Fibroin Nanoparticles: Synthesis and Applications as Drug Nanocarriers

2021 ◽  
Author(s):  
Guzmán Carissimi ◽  
Mercedes G. Montalbán ◽  
Marta G. Fuster ◽  
Gloria Víllora

The use of nanoparticles in biomedical fields is a very promising scientific area and has aroused the interest of researchers in the search for new biodegradable, biocompatible and non-toxic materials. This chapter is based on the features of the biopolymer silk fibroin and its applications in nanomedicine. Silk fibroin, obtained from the Bombyx mori silkworm, is a natural polymeric biomaterial whose main features are its amphiphilic chemistry, biocompatibility, biodegradability, excellent mechanical properties in various material formats, and processing flexibility. All of these properties make silk fibroin a useful candidate to act as nanocarrier. In this chapter, the structure of silk fibroin, its biocompatibility and degradability are reviewed. In addition, an intensive review on the silk fibroin nanoparticle synthesis methods is also presented. Finally, the application of the silk fibroin nanoparticles for drug delivery acting as nanocarriers is detailed.

Polymers ◽  
2019 ◽  
Vol 11 (12) ◽  
pp. 2045 ◽  
Author(s):  
Guzmán Carissimi ◽  
A. Abel Lozano-Pérez ◽  
Mercedes G. Montalbán ◽  
Salvador D. Aznar-Cervantes ◽  
José Luis Cenis ◽  
...  

Several studies have stated that the process used for sericin removal, or degumming, from silk cocoons has a strong impact in the silk fibroin integrity and consequently in their mechanical or biochemical properties after processing it into several biomaterials (e.g. fibers, films or scaffolds) but still, there is a lack of information of the impact on the features of silk nanoparticles. In this work, silk cocoons were degummed following four standard methods: autoclaving, short alkaline (Na2CO3) boiling, long alkaline (Na2CO3) boiling and ultrasounds. The resultant silk fibroin fibers were dissolved in the ionic liquid 1-ethyl-3-methylimidazolium acetate and used for nanoparticle synthesis by rapid desolvation in polar organic solvents. The relative efficiencies of the degumming processes and the integrity of the resulting fibroin fibers obtained were analyzed by mass loss, optical microscopy, thermogravimetric analysis, infrared spectroscopy and SDS-PAGE. Particle sizes and morphology were analyzed by Dynamic Light Scattering and Field Emission Scanning Electronic Microscopy. The results showed that the different treatments had a remarkable impact on the integrity of the silk fibroin chains, as confirmed by gel electrophoresis, which can be correlated with particle mean size and size distribution changes. The smallest nanoparticles (156 ± 3 nm) and the most negative Z potential (−30.2 ± 1.8 mV) were obtained with the combination of long treatment (2 h) of boiling in alkaline solution (Na2CO3 0.02 eq/L). The study confirms that parameters of the process, such as composition of the solution and time of the degumming step, must be controlled in order to reach an optimum reproducibility of the nanoparticle production.


2019 ◽  
Vol 15 (4) ◽  
pp. 339-348 ◽  
Author(s):  
Olga Gianak ◽  
George Z. Kyzas ◽  
Victoria F. Samanidou ◽  
Eleni A. Deliyanni

Background: Silk fibroin is the main protein of silk, and it has recently been evaluated for drug delivery applications due to its excellent properties. Specifically, silk fibroin exhibits good biocompatibility, biodegradability and low immunogenicity. Fibroin nanoparticles have attracted attention due to their high binding ability to different drugs as well as their ability for controlled drug release. The improvement of the therapeutic efficiency of drug encapsulation is important and depends on the particle size, the chemical structure and the properties of the silk fibroin nanoparticles. Methods: There is a variety of methods for the preparation of fibroin nanoparticles such as (i) electrospraying and desolvation method, (ii) supercritical fluid technologies, (iii) capillary-microdot technique, (iv) salting out etc. Furthermore, various techniques have been used for the characterization of nanoparticles such as SEM (scanning electron microscopy), TEM (transmission electron microscopy), DLS (dynamic light scattering), Zeta-potential and FTIR (Fourier transform infrared spectroscopy). Different drugs (paclitaxel, curcumin, 5-fluorouracil etc) have been encapsulated in fibroin nanoparticles. Results: Each separated synthesis method has different advantages such as (i) high yield, (ii) avoid use of toxic solvents, (iii) low cost, (iv) controllable particle size, (v) no organic solvent residue, (vi) simplicity of operation, (vii) small particles size, (viii) homeliness of operation, (ix) restrainable particle size, (x) easy and safe to operate, (xi) no use of organic solvent. Moreover, some major drugs studied are Floxuridine, Fluorouracil, Curcumin, Doxorubicin, Metotrexate, Paclitaxel and Doxorubicin, Horseradish peroxidase. All the above combinations (preparation method-drug) are studied in detail. Conclusion: Various drugs have been encapsulated successfully in silk fibroin and all of them exhibit a significant release rate. Finally, the encapsulation efficiency and release rate depend on the molecular weight of the drugs and it can be adjusted by controlling the crystallinity and concentration of silk fibroin.


2014 ◽  
Vol 27 ◽  
pp. 75-81 ◽  
Author(s):  
Shen Zhou Lu ◽  
Juan Wang ◽  
Li Mao ◽  
Gui Jun Li ◽  
Jian Jin

Silk nanoparticles were easily obtained from regenerated Antheraea Pernyi Silk Fibroin (ASF). The morphology and average size of the silk particles was sensitive to pH value of fibroin solution. The diameter of nanoparticles prepared was in the range of 30 nm to 1000 nm with a narrow size distribution. On this process, the molecular conformation of regenerated ASF changed from α-helix to β-sheet structure. The shape of prepared nanoparticles were regular spherical structure when the pH value was about 4.3 (pI) in ASF solution. Doxorubicin hydrochloride (DOX) was loaded in the ASF particles as drug release model and the drug-loading ratio was 3.4 %. The release rate of DOX from ASF nanoparticles was pH sensitive. After 23 days release, there was still 84% DOX in the ASF nanoparticles. The result suggested that the ASF nanoparticles might be suitable microcarriers for drug delivery.


Author(s):  
Guzmán Carissimi ◽  
A. Abel Lozano-Pérez ◽  
Mercedes G. Montalbán ◽  
Salvador D. Aznar-Cervantes ◽  
José Luis Cenis ◽  
...  

In recent years, numerous research studies have shown the excellent characteristics of silk fibroin nanoparticles as a vehicle for drugs delivery and it is foreseeable that their production could reach industrial scale in the coming years. For this reason, it is essential to know all the parameters that affect the formation of nanoparticles in order to standardize the process. Several studies have stated that the process used for sericin removal (degumming) from silk cocoons has a strong impact in the silk fibroin integrity and their mechanical properties after processing it into biomaterials. In this work, silk cocoons were degummed following four standard methods: autoclaving, short alkaline (Na2CO3) boiling, long alkaline (Na2CO3) boiling and ultrasounds. The resultant silk fibroin fibers were dissolved in the ionic liquid 1-ethyl-3-methylimidazolium acetate and used for nanoparticle synthesis by rapid desolvation in polar organic solvents. The relative efficiencies of the degumming processes and the integrity of the resulting fibroin fibers obtained were analyzed by weight loss, optical microscopy, thermogravimetric analysis, infrared spectroscopy and SDS-PAGE. Particle sizes and morphology were analyzed by Dynamic Light Scattering and Field Emission Scanning Electronic Microscopy. The results showed that the different treatments had a remarkable impact on the integrity of the silk fibroin chains, as confirmed by gel electrophoresis which can be correlated with particle mean size and size distribution changes. The study confirm that all the parameters of the process must be controlled in order to reach an optimum reproducibility of the nanoparticle production.


Pharmaceutics ◽  
2019 ◽  
Vol 11 (10) ◽  
pp. 494 ◽  
Author(s):  
Mhd Anas Tomeh ◽  
Roja Hadianamrei ◽  
Xiubo Zhao

Silk is a natural polymer with unique physicochemical and mechanical properties which makes it a desirable biomaterial for biomedical and pharmaceutical applications. Silk fibroin (SF) has been widely used for preparation of drug delivery systems due to its biocompatibility, controllable degradability and tunable drug release properties. SF-based drug delivery systems can encapsulate and stabilize various small molecule drugs as well as large biological drugs such as proteins and DNA to enhance their shelf lives and control the release to enhance their circulation time in the blood and thus the duration of action. Understanding the properties of SF and the potential ways of manipulating its structure to modify its physicochemical and mechanical properties allows for preparation of modulated drug delivery systems with desirable efficacies. This review will discuss the properties of SF material and summarize the recent advances of SF-based drug and gene delivery systems. Furthermore, conjugation of the SF to other biomolecules or polymers for tissue-specific drug delivery will also be discussed.


Sign in / Sign up

Export Citation Format

Share Document