scholarly journals Mosses: Accessible Systems for Plant Development Studies

2021 ◽  
Author(s):  
Jordi Floriach-Clark ◽  
Han Tang ◽  
Viola Willemsen

Mosses are a cosmopolitan group of land plants, sister to vascular plants, with a high potential for molecular and cell biological research. The species Physcomitrium patens has helped gaining better understanding of the biological processes of the plant cell, and it has become a central system to understand water-to-land plant transition through 2D-to-3D growth transition, regulation of asymmetric cell division, shoot apical cell establishment and maintenance, phyllotaxis and regeneration. P. patens was the first fully sequenced moss in 2008, with the latest annotated release in 2018. It has been shown that many gene functions and networks are conserved in mosses when compared to angiosperms. Importantly, this model organism has a simplified and accessible body structure that facilitates close tracking in time and space with the support of live cell imaging set-ups and multiple reporter lines. This has become possible thanks to its fully established molecular toolkit, with highly efficient PEG-assisted, CRISPR/Cas9 and RNAi transformation and silencing protocols, among others. Here we provide examples on how mosses exhibit advantages over vascular plants to study several processes and their future potential to answer some other outstanding questions in plant cell biology.

2008 ◽  
Vol 7 (2) ◽  
pp. 210-219 ◽  
Author(s):  
Daryl D. Hurd

The skill set required of biomedical researchers continues to grow and evolve as biology matures as a natural science. Science necessitates creative yet critical thinking, persuasive communication skills, purposeful use of time, and adeptness at the laboratory bench. Teaching these skills can be effectively accomplished in an inquiry-based, active-learning environment at a primarily undergraduate institution. Cell Biology Techniques, an upper-level cell biology laboratory course at St. John Fisher College, features two independent projects that take advantage of the biology of the nematode Caenorhabditis elegans, a premier yet simple model organism. First, students perform a miniature epigenetic screen for novel phenotypes using RNA interference. The results of this screen combined with literature research direct students toward a singe gene that they attempt to subclone in the second project. The biology of the chosen gene/protein also becomes an individualized focal point with respect to the content of the laboratory. Progress toward course goals is evaluated using written, oral, and group-produced assignments, including a concept map. Pre- and postassessment indicates a significant increase in the understanding of broad concepts in cell biological research.


PeerJ ◽  
2021 ◽  
Vol 9 ◽  
pp. e10930
Author(s):  
Brigita Gylytė ◽  
Sigita Jurkonienė ◽  
Reda Cimmperman ◽  
Vaidevutis Šveikauskas ◽  
Levonas Manusadžianas

Cells of characean algae are attractive for plant cell physiologists because of their large size and their close relation to higher plant cells. The objective of our study was to evaluate the purity of the compartments (cell wall, cytoplasm with plastids, mitochondria, nuclei and endomembrane system, and vacuole) separated mechanically from the internodal cells of Nitellopsis obtusa using enzymatic markers. These included α-mannosidase and malate dehydrogenase, vacuolar and cytoplasmic enzymes, respectively. The biomarkers applied revealed the degree of compartment contamination with the material from unwanted cell parts. The cell wall was contaminated slightly by vacuole and cytoplasm residuals, respectively by 12.3 and 1.96% of corresponding biomarker activities. Relatively high activity of vacuolar marker in the cell wall could be associated with the cell vacuoles in the multicellular structure of the nodes. The biomarkers confirmed highly purified vacuolar (99.5%) and cytoplasmic (86.7%) compartments. Purity estimation of the cell fractions enabled reevaluating nCuO related Cu concentrations in the compartments of charophyte cell. The internalisation of CuO nanoparticles in N. obtusa cell occurred already after 0.5h. In general, the approach seems to be useful for assessing the accumulation and distribution of various xenobiotics and/or metabolites within plant cell. All this justifies N.obtusa internodal cells as a model organism for modern studies in cell biology and nanotoxicology.


Author(s):  
Béatrice Satiat-Jeunemaitre ◽  
Chris Hawes

The comprehension of the molecular architecture of plant cell walls is one of the best examples in cell biology which illustrates how developments in microscopy have extended the frontiers of a topic. Indeed from the first electron microscope observation of cell walls it has become apparent that our understanding of wall structure has advanced hand in hand with improvements in the technology of specimen preparation for electron microscopy. Cell walls are sub-cellular compartments outside the peripheral plasma membrane, the construction of which depends on a complex cellular biosynthetic and secretory activity (1). They are composed of interwoven polymers, synthesised independently, which together perform a number of varied functions. Biochemical studies have provided us with much data on the varied molecular composition of plant cell walls. However, the detailed intermolecular relationships and the three dimensional arrangement of the polymers in situ remains a mystery. The difficulty in establishing a general molecular model for plant cell walls is also complicated by the vast diversity in wall composition among plant species.


2021 ◽  
Vol 7 (2) ◽  
pp. 149
Author(s):  
Sarah-Maria Wege ◽  
Katharina Gejer ◽  
Fabienne Becker ◽  
Michael Bölker ◽  
Johannes Freitag ◽  
...  

The phytopathogenic smut fungus Ustilago maydis is a versatile model organism to study plant pathology, fungal genetics, and molecular cell biology. Here, we report several strategies to manipulate the genome of U. maydis by the CRISPR/Cas9 technology. These include targeted gene deletion via homologous recombination of short double-stranded oligonucleotides, introduction of point mutations, heterologous complementation at the genomic locus, and endogenous N-terminal tagging with the fluorescent protein mCherry. All applications are independent of a permanent selectable marker and only require transient expression of the endonuclease Cas9hf and sgRNA. The techniques presented here are likely to accelerate research in the U. maydis community but can also act as a template for genome editing in other important fungi.


Nature ◽  
1969 ◽  
Vol 222 (5193) ◽  
pp. 600-601
Author(s):  
JOHN G. TORREY
Keyword(s):  

2006 ◽  
Vol 84 (4) ◽  
pp. 515-522 ◽  
Author(s):  
Preetinder K. Dhanoa ◽  
Alison M. Sinclair ◽  
Robert T. Mullen ◽  
Jaideep Mathur

The discovery and development of multicoloured fluorescent proteins has led to the exciting possibility of observing a remarkable array of subcellular structures and dynamics in living cells. This minireview highlights a number of the more common fluorescent protein probes in plants and is a testimonial to the fact that the plant cell has not lagged behind during the live-imaging revolution and is ready for even more in-depth exploration.


Biosensors ◽  
2021 ◽  
Vol 11 (8) ◽  
pp. 257
Author(s):  
Sebastian Fudickar ◽  
Eike Jannik Nustede ◽  
Eike Dreyer ◽  
Julia Bornhorst

Caenorhabditis elegans (C. elegans) is an important model organism for studying molecular genetics, developmental biology, neuroscience, and cell biology. Advantages of the model organism include its rapid development and aging, easy cultivation, and genetic tractability. C. elegans has been proven to be a well-suited model to study toxicity with identified toxic compounds closely matching those observed in mammals. For phenotypic screening, especially the worm number and the locomotion are of central importance. Traditional methods such as human counting or analyzing high-resolution microscope images are time-consuming and rather low throughput. The article explores the feasibility of low-cost, low-resolution do-it-yourself microscopes for image acquisition and automated evaluation by deep learning methods to reduce cost and allow high-throughput screening strategies. An image acquisition system is proposed within these constraints and used to create a large data-set of whole Petri dishes containing C. elegans. By utilizing the object detection framework Mask R-CNN, the nematodes are located, classified, and their contours predicted. The system has a precision of 0.96 and a recall of 0.956, resulting in an F1-Score of 0.958. Considering only correctly located C. elegans with an [email protected] IoU, the system achieved an average precision of 0.902 and a corresponding F1 Score of 0.906.


2021 ◽  
Vol 72 (1) ◽  
Author(s):  
Takayuki Kohchi ◽  
Katsuyuki T. Yamato ◽  
Kimitsune Ishizaki ◽  
Shohei Yamaoka ◽  
Ryuichi Nishihama

Bryophytes occupy a basal position in the monophyletic evolution of land plants and have a life cycle in which the gametophyte generation dominates over the sporophyte generation, offering a significant advantage in conducting genetics. Owing to its low genetic redundancy and the availability of an array of versatile molecular tools, including efficient genome editing, the liverwort Marchantia polymorpha has become a model organism of choice that provides clues to the mechanisms underlying eco-evo-devo biology in plants. Recent analyses of developmental mutants have revealed that key genes in developmental processes are functionally well conserved in plants, despite their morphological differences, and that lineage-specific evolution occurred by neo/subfunctionalization of common ancestral genes. We suggest that M. polymorpha is an excellent platform to uncover the conserved and diversified mechanisms underlying land plant development. Expected final online publication date for the Annual Review of Plant Biology, Volume 72 is May 2021. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.


Author(s):  
Erina A. Balmer ◽  
Carmen Faso

Protein secretion in eukaryotic cells is a well-studied process, which has been known for decades and is dealt with by any standard cell biology textbook. However, over the past 20 years, several studies led to the realization that protein secretion as a process might not be as uniform among different cargos as once thought. While in classic canonical secretion proteins carry a signal sequence, the secretory or surface proteome of several organisms demonstrated a lack of such signals in several secreted proteins. Other proteins were found to indeed carry a leader sequence, but simply circumvent the Golgi apparatus, which in canonical secretion is generally responsible for the modification and sorting of secretory proteins after their passage through the endoplasmic reticulum (ER). These alternative mechanisms of protein translocation to, or across, the plasma membrane were collectively termed “unconventional protein secretion” (UPS). To date, many research groups have studied UPS in their respective model organism of choice, with surprising reports on the proportion of unconventionally secreted proteins and their crucial roles for the cell and survival of the organism. Involved in processes such as immune responses and cell proliferation, and including far more different cargo proteins in different organisms than anyone had expected, unconventional secretion does not seem so unconventional after all. Alongside mammalian cells, much work on this topic has been done on protist parasites, including genera Leishmania, Trypanosoma, Plasmodium, Trichomonas, Giardia, and Entamoeba. Studies on protein secretion have mainly focused on parasite-derived virulence factors as a main source of pathogenicity for hosts. Given their need to secrete a variety of substrates, which may not be compatible with canonical secretion pathways, the study of mechanisms for alternative secretion pathways is particularly interesting in protist parasites. In this review, we provide an overview on the current status of knowledge on UPS in parasitic protists preceded by a brief overview of UPS in the mammalian cell model with a focus on IL-1β and FGF-2 as paradigmatic UPS substrates.


Sign in / Sign up

Export Citation Format

Share Document