scholarly journals Syngas Production Using Natural Gas from the Environmental Point of View

Author(s):  
Karina Tamião de Campos Roseno ◽  
Rita M. de B. Alves ◽  
Reinaldo Giudici ◽  
Martin Schmal
2016 ◽  
Vol 3 (1) ◽  
pp. 78
Author(s):  
Blerina Muskaj

At the beginning of my paper I will explain the concept of "Geopolitics of Energy", this will be done for a quite simple reason, because I want everyone who can sit to read this article to understand more clearly what is at stake, therefore allow them the comprehension of what is being elaborated bellow at first sight. Geopolitics of energy is a concept that relates to policies choosing exporters to implement on importers, is the policy that has an impact on energy consumption, which includes consumer’s choice in the geopolitical context, taking into account the economy, foreign policy, the safety of energy, environmental consequences and priorities that carries the energy exporter. This concept permits the understanding of how works the politics that undertakes this initiative taking into account natural resources such as: natural gas and oil. Natural gas and oil are two main resources that produce energy but also two main elements on which arises all the topic in the energetics game. For this paper is used qualitative methodology, through which we were able to accomplish this work. I focused on scientific literature, official publications and reports on energy geopolitics. The main aim has been to show how in this decade, energy security is at the center of geopolitical agenda and has become the focus of numerous political debates. Regarding this point of view, Europe is taking the initiative to create a common energy market within the continent by creating projects, in which Albania appears as a new regional energy potential. Russia, which is aiming to play a role in the international arena, is seeking to position itself geopolitically in "its political weapon", hydrocarbon resources, in particular natural gas resources.


Energies ◽  
2021 ◽  
Vol 14 (4) ◽  
pp. 1063
Author(s):  
Catalina Hernández Moris ◽  
Maria Teresa Cerda Guevara ◽  
Alois Salmon ◽  
Alvaro Lorca

The energy sector in Chile demands a significant increase in renewable energy sources in the near future, and concentrated solar power (CSP) technologies are becoming increasingly competitive as compared to natural gas plants. Motivated by this, this paper presents a comparison between solar technologies such as hybrid plants and natural gas-based thermal technologies, as both technologies share several characteristics that are comparable and beneficial for the power grid. This comparison is made from an economic point of view using the Levelized Cost of Energy (LCOE) metric and in terms of the systemic benefits related to flexibility, which is very much required due to the current decarbonization scenario of Chile’s energy matrix. The results show that the LCOE of the four hybrid plant models studied is lower than the LCOE of the gas plant. A solar hybrid plant configuration composed of a photovoltaic and solar tower plant (STP) with 13 h of storage and without generation restrictions has an LCOE 53 USD/MWh, while the natural gas technology evaluated with an 85% plant factor and a variable fuel cost of 2.0 USD/MMBtu has an LCOE of 86 USD/MWh. Thus, solar hybrid plants under a particular set of conditions are shown to be more cost-effective than their closest competitor for the Chilean grid while still providing significant dispatchability and flexibility.


Author(s):  
Vitaliy Makarov ◽  
◽  
Mykola Kaplin ◽  

The subject of the research is the directions of development of the gas industry of Ukraine. The purpose of the study is to develop a mathematical model for calculating the program of development of the country's gas industry to solve the problem of choosing options for commissioning of new natural gas fields and intensification of existing fields. The methods of system analysis, linear programming, comparative analysis and expert evaluations are used in the work. A model for calculating a program for the development of the gas industry is proposed to solve the problem of choosing options for commissioning new natural gas fields and intensifying existing fields. The model is based on representing development options with achievable volumes of annual production increase in integer linear programming problems. New and operating natural gas fields can be presented in the model with statistical information on their distribution by reserves and depths with the corresponding development costs, as well as the dependences of the predicted annual production volume on the measures taken and technologies to improve the efficiency of gas extraction. Model calculations provide a two-stage method for determining the options for the development of the industry. At the first stage, a variety of options are optimized according to the criterion of unit costs per 1,000 m3 of gas produced during the entire program period. The second stage ensures the optimal distribution of the selected options between the periods of the program using the criterion of the production volume and with the limited costs of the previous period for the preparation, prospecting and exploration of deposits. The results of calculating feasible options for the development of the gas production industry based on statistical information on volume, mining and geological and cost indicators of the development of resources and natural gas reserves are presented. The calculations investigated the options for the uniform distribution of investment, as well as their growth from the first stage to the next. For both cases, the priority is set for the selection of fields with large reserves at the same depths. Such a procedure for putting fields into operation is expedient, both from the point of view of the criterion for the optimal functioning of the industry over a long period of time – the unit costs of production, and on the basis of considerations of achieving the highest volumes of extraction in the shortest possible time. In the case of small capital investments in the development of the industry, the model selects small-volume reserves of deposits according to the structure of Ukrainian reserves.


2018 ◽  
Vol 113 ◽  
pp. 222-239 ◽  
Author(s):  
William W. Tso ◽  
Alexander M. Niziolek ◽  
Onur Onel ◽  
C. Doga Demirhan ◽  
Christodoulos A. Floudas ◽  
...  

Energies ◽  
2020 ◽  
Vol 13 (7) ◽  
pp. 1732 ◽  
Author(s):  
Muhammad Abdul Qyyum ◽  
Muhammad Yasin ◽  
Alam Nawaz ◽  
Tianbiao He ◽  
Wahid Ali ◽  
...  

Propane-Precooled Mixed Refrigerant (C3MR) and Single Mixed Refrigerant (SMR) processes are considered as optimal choices for onshore and offshore natural gas liquefaction, respectively. However, from thermodynamics point of view, these processes are still far away from their maximum achievable energy efficiency due to nonoptimal execution of the design variables. Therefore, Liquefied Natural Gas (LNG) production is considered as one of the energy-intensive cryogenic industries. In this context, this study examines a single-solution-based Vortex Search (VS) approach to find the optimal design variables corresponding to minimal energy consumption for LNG processes, i.e., C3MR and SMR. The LNG processes are simulated using Aspen Hysys and then linked with VS algorithm, which is coded in MATLAB. The results indicated that the SMR process is a potential process for offshore sites that can liquefy natural gas with 16.1% less energy consumption compared with the published base case. Whereas, for onshore LNG production, the energy consumption for the C3MR process is reduced up to 27.8% when compared with the previously published base case. The optimal designs of the SMR and C3MR processes are also found via distinctive well-established optimization approaches (i.e., genetic algorithm and particle swarm optimization) and their performance is compared with that of the VS methodology. The authors believe this work will greatly help the process engineers overcome the challenges relating to the energy efficiency of LNG industry, as well as other mixed refrigerant-based cryogenic processes.


Author(s):  
Gaoming Ge ◽  
Tomohiko Ikegawa ◽  
Koji Nishida ◽  
Carey J. Simonson

Hitachi-GE developed a 300 MWel class modular simplified and medium small reactor (DMS) concept, and the DMS was originally designed for generating electricity only. In this study, the feasibility of a cogeneration DMS plant which supplies both electricity and heat is under investigation. The thermal performance of the DMS plant without or with low-, medium-, or high-temperature thermal utilization (TU) applications is evaluated by numerical simulations. The results show that the electricity generated reduces as the heating requirement of TU application becomes higher. Furthermore, the economic performance of the cogeneration DMS plant is compared with another two integrated systems: (i) DMS plus electric boilers and (ii) DMS plus natural gas boilers, for those three TU applications in Canada. The results illustrate that the DMS plus natural gas boilers system are most economic if there is no carbon tax, but with high-CO2 emissions (up to 180 kton per year). The cogeneration plant performs best as the carbon tax increases up to $40/ton. The cogeneration DMS plant is a promising scheme to supply both electricity and heat simultaneously in the economic-environmental point of view.


2005 ◽  
Vol 127 (3) ◽  
pp. 545-552 ◽  
Author(s):  
Alessandro Corradetti ◽  
Umberto Desideri

In the last several years greenhouse gas emissions, and, in particular, carbon dioxide emissions, have become a major concern in the power generation industry and a large amount of research work has been dedicated to this subject. Among the possible technologies to reduce CO2 emissions from power plants, the pretreatment of fossil fuels to separate carbon from hydrogen before the combustion process is one of the least energy-consuming ways to facilitate CO2 capture and removal from the power plant. In this paper several power plant schemes with reduced CO2 emissions were simulated. All the configurations were based on the following characteristics: (i) syngas production via natural gas reforming; (ii) two reactors for CO-shift; (iii) “precombustion” decarbonization of the fuel by CO2 absorption with amine solutions; (iv) combustion of hydrogen-rich fuel in a commercially available gas turbine; and (v) combined cycle with three pressure levels, to achieve a net power output in the range of 400 MW. The base reactor employed for syngas generation is the ATR (auto thermal reformer). The attention was focused on the optimization of the main parameters of this reactor and its interaction with the power section. In particular the simulation evaluated the benefits deriving from the postcombustion of exhaust gas and from the introduction of a gas-gas heat exchanger. All the components of the plants were simulated using ASPEN PLUS software, and fixing a reduction of CO2 emissions of at least 90%. The best configuration showed a thermal efficiency of approximately 48% and CO2 specific emissions of 0.04 kg/kWh.


Sign in / Sign up

Export Citation Format

Share Document