Thermo-Economic Performance of a Cogeneration Medium–Small Modular Nuclear Reactor Plant in Canada

Author(s):  
Gaoming Ge ◽  
Tomohiko Ikegawa ◽  
Koji Nishida ◽  
Carey J. Simonson

Hitachi-GE developed a 300 MWel class modular simplified and medium small reactor (DMS) concept, and the DMS was originally designed for generating electricity only. In this study, the feasibility of a cogeneration DMS plant which supplies both electricity and heat is under investigation. The thermal performance of the DMS plant without or with low-, medium-, or high-temperature thermal utilization (TU) applications is evaluated by numerical simulations. The results show that the electricity generated reduces as the heating requirement of TU application becomes higher. Furthermore, the economic performance of the cogeneration DMS plant is compared with another two integrated systems: (i) DMS plus electric boilers and (ii) DMS plus natural gas boilers, for those three TU applications in Canada. The results illustrate that the DMS plus natural gas boilers system are most economic if there is no carbon tax, but with high-CO2 emissions (up to 180 kton per year). The cogeneration plant performs best as the carbon tax increases up to $40/ton. The cogeneration DMS plant is a promising scheme to supply both electricity and heat simultaneously in the economic-environmental point of view.

1969 ◽  
Vol 35 ◽  
pp. 87-90
Author(s):  
Karen Lyng Anthonsen ◽  
Peter Frykman ◽  
Carsten Møller Nielsen

The concept of utilising available pore space in deep saline sandstone aquifers for storage of CO2 was recognised in the late 1980s. In 1996, the first commercial CO2 storage project began with injection into sandstones of the Utsira Formation in Norway. The formation is located above the Sleipner Formation from where the Sleipner field produces natural gas. The project was initiated due to a high CO2 content of the natural gas, which was subjected to a Norwegian offshore carbon tax. The natural gas is produced on the Sleipner platform where the CO2 is separated, captured and reinjected from a neighbouring platform. The potential for using the technology to reduce CO2 emissions from large stationary point sources initiated many research projects aimed at mapping areas with potential CO2 storage capacity around the world.


2021 ◽  
Vol 286 ◽  
pp. 02014
Author(s):  
Gheorghe Lăzăroiu ◽  
Lucian Mihăescu ◽  
Dana-Alexandra Ciupăgeanu ◽  
Rodica-Manuela Grigoriu ◽  
Dana-Andreya Bondrea

The paper presents an investigation on the conditions for implementing a methanation membrane decarbonator coupled to an energy installation that generates flue gases. The retention of the carbon dioxide content in the flue gases and its conversion to methane is envisaged. For start, low thermal power installations, employing natural gas as main fuel supply, are considered. Internal combustion engines (also working with natural gas fuel) are taken into account for the testing of the carbon dioxide retention process. For this, a classification of the flue gas composition by fuel categories is initially carried out. The decarbonation efficiency is defined and clarifications are made withal regarding the connection between the decarbonation installation and the energy plant. The first practical achievements are also presented, resulting from a decarbonator with a volume of 940 cm3 (having the inner diameter of 12 cm and a height of 50 cm). The results prove that the proposed solution has great potential for practical applications, further research being however necessary. In terms of operating costs (including hydrogen consumption), it is remarked that they can be reduced by exploiting the methane production and eliminating the carbon tax, extending the integration perspective form economic point of view.


2014 ◽  
Author(s):  
Mubenga Carl Tshamala ◽  
Robert T. Dobson

Traditionally nuclear reactor power plants have been optimized for electrical power generation only. In the light of the ever-rising cost of ever-dwindling fossil fuel resources as well the global polluting effects and consequences of their usage, the use of nuclear energy for process heating is becoming increasingly attractive. In this study the use of a so-called cogeneration plant in which a nuclear reactor energy source is simulated using basic equations for the simultaneous production of superheated steam for electrical power generation and process heat, is considered and analyzed. A novel heat pipe heat exchanger is used to generate superheated steam for the process heat which is, in this case, a coal-to-liquid process (CTL). Natural circulation of sodium, via a thermo-syphon, is used in the heat pipe heat exchanger to transfer heat from the hot stream to the cold. The superheated steam for power generation is generated in a separate once-through helical coil steam generator. A 750 °C, 7 MPa helium cooled high-temperature modular reactor (HTMR) has been considered to simultaneously provide steam at 540 °C, 13.5 MPa for the power unit and steam at 430 °C, 4 MPa for a CTL production plant. The simulation and dynamic control of such a cogeneration plant is considered. In particular, a theoretical model of the plant will be simulated with the aim of predicting the transient and dynamic behavior of the HTMR in order to provide guideline for the control of the plant under various operating conditions. It was found that the simulation model captured the behavior of the plant reasonably well and it is recommended that it could be used in the detailed design of plant control strategies. It was also found that using a 1500 MW-thermal HTMR the South African contribution to global pollution can be reduced by 1.58%.


Energies ◽  
2020 ◽  
Vol 13 (2) ◽  
pp. 400 ◽  
Author(s):  
Marek Jaszczur ◽  
Michał Dudek ◽  
Zygmunt Kolenda

The EU has implemented targets to achieve a 20% share of energy from renewable sources by 2020, and 32% by 2030. Additionally, in the EU countries by 2050, more than 80% of electrical energy should be generated using non-greenhouse gases emission technology. At the same time, energy cost remains a crucial economic issue. From a practical point of view, the most effective technology for energy conversion is based on a gas turbine combined cycle. This technology uses natural gas, crude oil or coal gasification product but in any case, generates a significant amount of toxic gases to the atmosphere. In this study, the environmentally friendly power generation system composed of a high-temperature nuclear reactor HTR integrated with gas turbine combined cycle technology and cogeneration unit is thermodynamically analysed. The proposed solution is one of the most efficient ways for energy conversion, and what is also important it can be easily integrated with HTR. The results of analysis show that it is possible to obtain for analysed cycles thermal efficiency higher than 50% which is not only much more than could be proposed by typical lignite or hard coal power plant but is also more than can be offered by nuclear technology.


Author(s):  
Gang Zhao ◽  
Ping Ye ◽  
Jie Wang ◽  
Xiaoyong Yang

The massive use of fossil fuel has caused huge carbon emission and serious air pollution in China. Now all kinds of alternative energy technology are developing rapidly to solve such problem in China. Electricity produced by non-fossil fuel energy is continued to increase sharply in China. But it’s hard for regular alternative energy, such as wind power, solar power, hydroelectricity power, nuclear power and so on, to easily provide process heat for industry, especially high temperature steam. High temperature Gas-cooled Reactor (HTGR, sometimes also called HTR) is a kind of nuclear reactor, which are demonstrated very high efficiencies, safety and availability features by American and German power plant. HTR differs from water nuclear reactors by offering a high thermal efficiency for electricity generation and a high level of passive safety features. Now HTR-PM project is built in Shidao Bay of China. Moreover, HTR is the only nuclear reactor, which can provide high temperature steam comparing with other water nuclear reactors. So HTR can provide a versatile cogeneration solution for industry. In this paper, a case was studied, how to provide heat for a refinery and petro-chemical plant with HTR. Firstly, the energy need of a typical large chemical plant in china was investigated. Steam supply diagram of an oil refinery plant, which produced 10 million tons oil products and 1 million tons ethylene in China, was calculated. Secondly, technical feasibility of energy providing by HTR cogeneration plant was discussed. Extraction steam from HTR system was designed for the chemical plant. It would meet the requirement of steam supply for chemical plant and would replace the captive power plant, where coal was burning. The balance of steam, enthalpy and temperature was calculated. At last, economic evaluation for such cogeneration plants was carried out. The steam supply cost from captive coal power plant and HTR cogeneration plant was compared. Some economical conclusion was made from the discussion.


Author(s):  
Herbert Stoll

For major users of natural gas whose consumption of gas remains constant on annual average, it may be economical to recover pressure energy in a power recovery turbine instead of destroying it by throttling the gas line pressure to the level of the supply system. Dortmunder Stadtwerke AG, a municipal power and transport utility at the eastern end of the Ruhr engaged RWTUV to provide consultancy and inspection services for the commissioning of such an installation and to conduct performance tests on all machine components. The special features of the control behaviour of the installation during flow-rate-oriented operation of the turbine are to be dealt with in this paper. This will be done from the point of view of a throttle-loss-free flow, as far as achievable, into the nozzle groups through the turbine inlet valves. The features of control behaviour during startup and in the case of load changes with regard to heat supply using unit cogeneration plant modules will also be looked at. Furthermore a report will be given on the special features of the performance test.


Sign in / Sign up

Export Citation Format

Share Document