scholarly journals The Impact of the Use of Large Non-Linear Lighting Loads in Low-Voltage Networks

Author(s):  
Natalio Milardovich ◽  
Leandro Prevosto ◽  
Miguel A. Lara ◽  
Diego Milardovich
Energies ◽  
2020 ◽  
Vol 13 (18) ◽  
pp. 4851
Author(s):  
Jairo Hernández ◽  
Andrés A. Romero ◽  
Jan Meyer ◽  
Ana María Blanco

In the last decade, mainly due to political incentives towards energy efficiency, the share of lamps with power electronic interfaces, like Compact Fluorescent Lamps (CFL) and Light Emitting Diode (LED) lamps, has significantly increased in the residential sector. Their massive use might have a substantial impact on harmonic currents and, consequently, on the current flowing in the neutral conductor. This paper analyzes the impact of modern energy-efficient lighting technologies on the neutral conductor current by using a synthetic Low Voltage residential grid. Different load scenarios reflecting the transition from incandescent lamps, via CFL, to LED lamps are compared concerning the neutral conductor current at different points in the network. The inherent randomness related to the use of lighting devices by each residential customer is considered employing a Monte Carlo simulation. Obtained results show that the use of CFL has a greater impact on the neutral conductor current of Low Voltage (LV) residential grids and that, with increasing use of LED lamps, a decreasing impact can be expected in the future.


Author(s):  
Julian Wosik ◽  
Bogdan Miedzinski ◽  
Artur Kozlowski ◽  
Marian Kalus

Electricity ◽  
2021 ◽  
Vol 2 (1) ◽  
pp. 91-109
Author(s):  
Julian Wruk ◽  
Kevin Cibis ◽  
Matthias Resch ◽  
Hanne Sæle ◽  
Markus Zdrallek

This article outlines methods to facilitate the assessment of the impact of electric vehicle charging on distribution networks at planning stage and applies them to a case study. As network planning is becoming a more complex task, an approach to automated network planning that yields the optimal reinforcement strategy is outlined. Different reinforcement measures are weighted against each other in terms of technical feasibility and costs by applying a genetic algorithm. Traditional reinforcements as well as novel solutions including voltage regulation are considered. To account for electric vehicle charging, a method to determine the uptake in equivalent load is presented. For this, measured data of households and statistical data of electric vehicles are combined in a stochastic analysis to determine the simultaneity factors of household load including electric vehicle charging. The developed methods are applied to an exemplary case study with Norwegian low-voltage networks. Different penetration rates of electric vehicles on a development path until 2040 are considered.


Mathematics ◽  
2021 ◽  
Vol 9 (4) ◽  
pp. 299
Author(s):  
Jaime Pinilla ◽  
Miguel Negrín

The interrupted time series analysis is a quasi-experimental design used to evaluate the effectiveness of an intervention. Segmented linear regression models have been the most used models to carry out this analysis. However, they assume a linear trend that may not be appropriate in many situations. In this paper, we show how generalized additive models (GAMs), a non-parametric regression-based method, can be useful to accommodate nonlinear trends. An analysis with simulated data is carried out to assess the performance of both models. Data were simulated from linear and non-linear (quadratic and cubic) functions. The results of this analysis show how GAMs improve on segmented linear regression models when the trend is non-linear, but they also show a good performance when the trend is linear. A real-life application where the impact of the 2012 Spanish cost-sharing reforms on pharmaceutical prescription is also analyzed. Seasonality and an indicator variable for the stockpiling effect are included as explanatory variables. The segmented linear regression model shows good fit of the data. However, the GAM concludes that the hypothesis of linear trend is rejected. The estimated level shift is similar for both models but the cumulative absolute effect on the number of prescriptions is lower in GAM.


Energies ◽  
2021 ◽  
Vol 14 (6) ◽  
pp. 1688 ◽  
Author(s):  
C. Birk Jones ◽  
Matthew Lave ◽  
William Vining ◽  
Brooke Marshall Garcia

An increase in Electric Vehicles (EV) will result in higher demands on the distribution electric power systems (EPS) which may result in thermal line overloading and low voltage violations. To understand the impact, this work simulates two EV charging scenarios (home- and work-dominant) under potential 2030 EV adoption levels on 10 actual distribution feeders that support residential, commercial, and industrial loads. The simulations include actual driving patterns of existing (non-EV) vehicles taken from global positioning system (GPS) data. The GPS driving behaviors, which explain the spatial and temporal EV charging demands, provide information on each vehicles travel distance, dwell locations, and dwell durations. Then, the EPS simulations incorporate the EV charging demands to calculate the power flow across the feeder. Simulation results show that voltage impacts are modest (less than 0.01 p.u.), likely due to robust feeder designs and the models only represent the high-voltage (“primary”) system components. Line loading impacts are more noticeable, with a maximum increase of about 15%. Additionally, the feeder peak load times experience a slight shift for residential and mixed feeders (≈1 h), not at all for the industrial, and 8 h for the commercial feeder.


2021 ◽  
Author(s):  
Stephen C. L. Watson ◽  
Adrian C. Newton ◽  
Lucy E. Ridding ◽  
Paul M. Evans ◽  
Steven Brand ◽  
...  

Abstract Context Agricultural intensification is being widely pursued as a policy option to improve food security and human development. Yet, there is a need to understand the impact of agricultural intensification on the provision of multiple ecosystem services, and to evaluate the possible occurrence of tipping points. Objectives To quantify and assess the long-term spatial dynamics of ecosystem service (ES) provision in a landscape undergoing agricultural intensification at four time points 1930, 1950, 1980 and 2015. Determine if thresholds or tipping points in ES provision may have occurred and if there are any detectable impacts on economic development and employment. Methods We used the InVEST suite of software models together with a time series of historical land cover maps and an Input–Output model to evaluate these dynamics over an 85-year period in the county of Dorset, southern England. Results Results indicated that trends in ES were often non-linear, highlighting the potential for abrupt changes in ES provision to occur in response to slight changes in underlying drivers. Despite the fluctuations in provision of different ES, overall economic activity increased almost linearly during the study interval, in line with the increase in agricultural productivity. Conclusions Such non-linear thresholds in ES will need to be avoided in the future by approaches aiming to deliver sustainable agricultural intensification. A number of positive feedback mechanisms are identified that suggest these thresholds could be considered as tipping points. However, further research into these feedbacks is required to fully determine the occurrence of tipping points in agricultural systems.


2021 ◽  
Vol 70 ◽  
pp. 102989
Author(s):  
Sławomir Kujawski ◽  
Katarzyna Buszko ◽  
Agnieszka Cudnoch-Jędrzejewska ◽  
Joanna Słomko ◽  
Djordje G. Jakovljevic ◽  
...  

Author(s):  
Hevellyn Talissa dos Santos ◽  
Cesar Augusto Marchioro

Abstract The small tomato borer, Neoleucinodes elegantalis (Guenée, 1854) is a multivoltine pest of tomato and other cultivated solanaceous plants. The knowledge on how N. elegantalis respond to temperature may help in the development of pest management strategies, and in the understanding of the effects of climate change on its voltinism. In this context, this study aimed to select models to describe the temperature-dependent development rate of N. elegantalis and apply the best models to evaluate the impacts of climate change on pest voltinism. Voltinism was estimated with the best fit non-linear model and the degree-day approach using future climate change scenarios representing intermediary and high greenhouse gas emission rates. Two out of the six models assessed showed a good fit to the observed data and accurately estimated the thermal thresholds of N. elegantalis. The degree-day and the non-linear model estimated more generations in the warmer regions and fewer generations in the colder areas, but differences of up to 41% between models were recorded mainly in the warmer regions. In general, both models predicted an increase in the voltinism of N. elegantalis in most of the study area, and this increase was more pronounced in the scenarios with high emission of greenhouse gases. The mathematical model (74.8%) and the location (9.8%) were the factors that mostly contributed to the observed variation in pest voltinism. Our findings highlight the impact of climate change on the voltinism of N. elegantalis and indicate that an increase in its population growth is expected in most regions of the study area.


Sign in / Sign up

Export Citation Format

Share Document