scholarly journals Thermal-Hydrodynamic Characteristics of Turbulent Flow in Corrugated Channels

Author(s):  
Nabeel S. Dhaidana ◽  
Abdalrazzaq K. Abbas
Author(s):  
Stanislav P. Sergeev ◽  
Faddey F. Nikiforov ◽  
Sergey V. Afanasiev ◽  
Juliya N. Shevchenko

The theoretical foundations of construction, mathematical description and engineering calculation of heat exchangers of the serpentine type in blocks of heat-using equipment of tube furnaces and other types of reactors designed for carrying out endothermic reactions (in particular, reforming of natural gas with water vapor) are considered. It is shown that the thermal efficiency of heat exchangers of the coil type is significantly affected by the correct choice of parameters ensuring a uniform distribution of energy flows over the surface of heat-resistant heat exchange tubes. This technological problem is solved by compiling the heat balance and selecting the system of the corresponding equations, which allows to calculate the temperature contour of the coil heat exchanger, its hydrodynamic characteristics and the distribution of mass and heat flows through the heat exchange tubes. The use of the tensor form of the Boussinesq hypothesis is considered, with which the Reynolds equation describing a turbulent flow is transformed to a partial differential equation for a single unknown function and its averaged form is obtained. In relation to the problem under consideration, the correctness of the chosen approach was confirmed both theoretically and experimentally. It is shown that in the core of a turbulent flow with an intense suction or injection, the liquid behaves almost as ideal and the well-known Helmholtz – Friedmann theorem holds with the necessary accuracy. From the aforementioned averaged equation, expressions are obtained that are suitable for describing heat fluxes in channels with suction or injection. According to this theoretical model, thermal calculations of coil-type heat exchangers were carried out, a more accurate assessment of the temperature of the heated medium in each coil tube was made, and the temperature gradient of the external heat carrier over the cross section of the gas duct was found. For the first time in the practice of calculations when choosing the parameters of coils, a number of boundary conditions were taken into account, such as the condition of the coil layout, the necessary heat exchange surface, permissible restrictions on hydraulic resistance, etc.


1973 ◽  
Vol 16 (3) ◽  
pp. 466-467
Author(s):  
N. T. Fazullin ◽  
M. S. Fomichev ◽  
A. V. Popov ◽  
A. B. Isaev

Author(s):  
Reza Shamsi ◽  
Hassan Ghassemi

This paper investigates the numerical modeling of turbulent flow and hydrodynamic analysis of podded propeller in open water and azimuthing conditions. The RANS (Reynolds-Averaged Navier Stokes) based solver is used in order to study the variations of hydrodynamic characteristics of podded propeller at various angles. The variations of thrust and torque coefficients as functions of the advance coefficient are obtained at various yaw angles. Turbulent flow around the propeller and pod are presented. At first, the propeller is analyzed in open water condition in absence of pod and strut. Next flow around pod and strut are simulated without effect of propellers. Finally, the whole unit is studied in zero yaw angle and azimuthing condition. These investigations are performed for two podded propulsor configurations: puller and pusher. Total forces on the unit in each direction and propeller torque are computed for a range of advance coefficients from 0.2 to 1. Yaw angle of pod are modified from +15° to −15° by increments of 5°. Computational results are examined against with available experimental data. Characteristic parameters including torque and thrust of propeller, axial force, and side force of unit are presented as functions of advance coefficient and yaw angle. The performance curves of the propeller obtained by numerical method are compared and verified by the experimental results. The results show that the propeller thrust, torque, and podded unit forces and moments in azimuthing condition depend on propeller advance coefficient and yaw angle.


Water ◽  
2020 ◽  
Vol 12 (3) ◽  
pp. 686 ◽  
Author(s):  
Changbo Jiang ◽  
Yang Yang ◽  
Bin Deng

We present a study on regular wave propagation on a sloping bed under the action of steady wind, which is of a great significance to complement and replenish the interaction mechanisms of nearshore wave and wind. Physical experiments were conducted in a wind-wave flume, and the corresponding numerical model was constructed based on the solver Waves2FOAM in OpenFOAM, with large-eddy simulation (LES) used to investigate the turbulent flow. The comparisons between the measured and calculated results of the free surface elevation and flow velocity indicated that the numerical model could predict the associated hydrodynamic characteristics of a nearshore wave regardless of the presence or absence of wind. The results showed that wind had a significant impact on nearshore wave evolution. It was found that under the same wind speed coverage constraint, wave breaking occurred ahead of time. The smaller the surf similarity ξ 0 was, the higher the dispersion degree of wave breaking locations would be, and the breaker index of H b / h b increased with wind speed under the same incident wave height. The main components of analysis for turbulent flow were the results of the cross-spectrum, the TKE (turbulent kinetic energy), and TDR (turbulent dissipation rate). The cross-spectrum illustrated that wind enhanced the degree of coherence of the residual velocity components and aggravated turbulence. The TKE indicated that in regions near the water surface, wind speed made it considerably larger and the average level rapidly decreased with depth. The TDR exhibited that the significant effect of wind was merely imposed after breaking, wherein the turbulence penetrated the deeper flow and the average level generally rose. The velocity profile on the slope showed that the wind accelerated the undertow, and the moment statistics indicated that the velocity distribution deviated gradually from the Gaussian distribution to the right.


ROTASI ◽  
2015 ◽  
Vol 17 (4) ◽  
pp. 182
Author(s):  
Syaiful Syaiful ◽  
Faza Dzulhimam

The purpose of this study is to investigate the thermal and hydrodynamic characteristics of air flowing in tubes with various inserts of grooved plate. Inserts of grooved plate with a variety of attack angles (a = 0°, 45° and 90°) has been studied in laminar and turbulent flow. Plate inserts are installed inside the tube intended to improve the heat transfer due to the mixing of the fluid. Numerical simulation of three-dimensional flow set as a model in the direction of fluid flow. The working fluid in the tube is cold, whereas hot wall temperature is kept constant. The results showed that the grooved plate inserts increases the heat transfer in the tube. For laminar flow, the highest heat transfer enhancement is obtained at the grooved plate inserts α = 45° i.e. from 4.46 to 20.34% with an increase in friction factor of 172.19 to 204.36%. As for the turbulent flow, the highest heat transfer improvement is found in a grooved plate inserts with α = 45° i.e. from 38.67 to 56.1% with an increase in friction factor of 183.5 to 262.29%.


1972 ◽  
Vol 15 (11) ◽  
pp. 1688-1689
Author(s):  
N. T. Fazullin ◽  
A. B. Isaev

2017 ◽  
Vol 824 ◽  
pp. 413-437 ◽  
Author(s):  
J. J. Voermans ◽  
M. Ghisalberti ◽  
G. N. Ivey

A basic framework characterising the interaction between aquatic flows and permeable sediment beds is presented here. Through the permeability Reynolds number ($Re_{K}=\sqrt{K}u_{\ast }/\unicode[STIX]{x1D708}$, where$K$is the sediment permeability,$u_{\ast }$is the shear velocity and$\unicode[STIX]{x1D708}$is the fluid viscosity), the framework unifies two classical flow typologies, namely impermeable boundary layer flows ($Re_{K}\ll 1$) and highly permeable canopy flows ($Re_{K}\gg 1$). Within this range, the sediment–water interface (SWI) is identified as a transitional region, with$Re_{K}$in aquatic systems typically$O(0.001{-}10)$. As the sediments obstruct conventional measurement techniques, experimental observations of interfacial hydrodynamics remain extremely rare. The use of refractive index matching here allows measurement of the mean and turbulent flow across the SWI and thus direct validation of the proposed framework. This study demonstrates a strong relationship between the structure of the mean and turbulent flow at the SWI and$Re_{K}$. Hydrodynamic characteristics, such as the interfacial turbulent shear stress, velocity, turbulence intensities and turbulence anisotropy tend towards those observed in flows over impermeable boundaries as$Re_{K}\rightarrow 0$and towards those seen in flows over highly permeable boundaries as$Re_{K}\rightarrow \infty$. A value of$Re_{K}\approx 1{-}2$is seen to be an important threshold, above which the turbulent stress starts to dominate the fluid shear stress at the SWI, the penetration depths of turbulence and the mean flow into the sediment bed are comparable and similarity relationships developed for highly permeable boundaries hold. These results are used to provide a new perspective on the development of interfacial transport models at the SWI.


Author(s):  
Jean Mathieu ◽  
Julian Scott
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document