scholarly journals uMngeni Basin Water Quality Trend Analysis for River Health and Treatability Fitness

Author(s):  
Innocent Rangeti ◽  
Bloodless (Rimuka) Dzwairo

One of the main challenges facing the potable water production industry is deterioration of the quality of raw water. Drinking water that does not meet quality standards is unfit for consumption. Yet, this quality is a function of various factors, key among them being quality of the raw water from which it is processed. This is because costs related to potable water treatment are related to the nature of raw water pollutants and the degree of pollution. Additionally, survival of aquatic species depends on self-purification of the water bodies through attenuation of pollutants, therefore, if this process is not efficient it might result in dwindling of the aquatic life. Hence, this chapter presents spatial and temporal water quality trends along uMngeni Basin, a critical raw water source for KwaZulu-Natal Province, in South Africa. As at 2014 the basin served about 3.8 million people with potable water. Results from this study are discussed in relation to uMngeni River’s health status and fitness for production of potable water treatment. Time-series and box plots of 11 water quality variables that were monitored at six stations over a period of eight years (2005 to 2012), were drawn and analysed. The Mann Kendall Trend Test and the Sen’s Slope Estimator were employed to test and quantify the magnitude of the quality trends, respectively. Findings showed that raw water (untreated) along uMngeni River was unfit for drinking purposes mainly because of high levels of Escherichia coli. However, the observed monthly average dissolved oxygen of 7 mg/L, that was observed on all stations, suggests that the raw water still met acceptable guidelines for freshwater ecosystems. It was noted that algae and turbidity levels peaked during the wet season (November to April), and these values directly relate to chlorine and polymer dosages during potable water treatment.

2014 ◽  
Vol 9 (3) ◽  
pp. 386-391 ◽  
Author(s):  
M. N. Dammo ◽  
A. Y. Sangodoyin

Water quality and supply are central to the socio-economic development of any nation. Scarcity of potable water results in the construction of dams and water treatment plants. Unfortunately, provision of potable water through improvement and treatment may prove to be difficult because of the socio-economic activities around a dam. This study is aimed at assessing the socio-economic activities around the Alau Dam Maiduguri, and how they affect the quality of raw water supply to Maiduguri Water Treatment Plant. The data was generated through the administration of questionnaires, and by interview and water quality analysis of dam and irrigation sites. The samples were subjected to physical, chemical and biological analysis to assess the impact of socio economic activities on the dam water, and its suitabilityfor drinking and agricultural uses. Findings reveal pollution with high concentration of nitrate (260–230 mg-NO3/l), phosphate (22–28 mg/l) and Escherichia coli (13–24 n/100 mg). This arose from improper sanitary management, inadequate public education on irrigation,indiscriminate waste disposaland some farming practices. Regular monitoring of socio-economic activities around the dam, and doing away with unhealthy waste disposal practices are recommended to safeguard the raw water supply to the treatment plant.


2001 ◽  
Author(s):  
◽  
Rachigan Rajagopaul

Historically inorganic coagulants were the coagulants of choice for OAF treatment of potable water. Water treatment practitioners using OAF technology preferred ferric chloride, an inorganic coagulant. Ferric chloride formed light, floatable floes at relatively low flocculation intensities and detention times. The inorganic coagulant was also more forgiving during incidents of overdosing and raw water and pH variability


1986 ◽  
Vol 69 (5) ◽  
pp. 807-810
Author(s):  
Bishop B Sithole ◽  
David T Williams

Abstract Samples of raw and treated water were collected once in each of 3 seasons at 40 potable water treatment plants across Canada and were analyzed for phenol and 33 halogenated phenolic compounds including chlorophenols, bromophenols, bromochlorophenols, and chloroguaiacols. Eighteen of the compounds were not found at any treatment plant; phenol and each of the remaining halogenated phenols were found in at least 1 sample. Pentachlorophenol was the only halogenated phenolic compound found in more than 20% of the raw water samples in the fall and winter samples at levels up to 53 ng/L with mean values of 1.9 and 2.8 ng/L, respectively. No halogenated phenols were detected in raw water summer samples. The halogenated phenols found most frequently in treated water samples were 4-chloro-, 2,4-dichloro-, 2,4,6- trichloro-, and bromodichlorophenols. Mean values were less than 15 ng/L and maximum values seldom exceeded 100 ng/L. Most of the positive values for the treated water samples were found at 8 of the 40 treatment plants but no correlations could be found between halogenated phenol levels and raw water type, treatment process, or chemical dosages.


2016 ◽  
Vol 17 (2) ◽  
pp. 597-605
Author(s):  
Zhiquan Liu ◽  
Yongpeng Xu ◽  
Xuewei Yang ◽  
Rui Huang ◽  
Qihao Zhou ◽  
...  

The overall purpose was to assess the feasibilities of recycling filter backwash water (FBWW) and combined filter backwash water (CFBWW) in a drinking water treatment plant in south China. The variations of regular water-quality indexes, metal indexes (Al, Mn and Cd), polyacrylamide and disinfection by-product indexes (trihalomethanes and their formation potentials) along with the treatment and the recycling processes were monitored. Results showed the recycling procedure caused increases of turbidity, total solids, ammonia nitrogen (NH3-N), permanganate index (CODMn), and dissolved organic carbon, Al, Mn and Cd concentrations in a mixture of raw water and FBWW or CFBWW compared to those in raw water. However, the recycling procedure had negligible impacts on the qualities of settled water and filtered water because most of the contaminants could be effectively removed by the conventional water treatment process. Although recycling did cause slight increases of NH3-N and CODMn levels in settled water and filtered water, the quality of finished water always conformed to Chinese standards for drinking water quality according to the surveyed indexes in the present study. Thus, it is appropriate to recycle waste streams in water-stressed areas if the source water is well managed and the water treatment processes are carefully conducted.


2019 ◽  
Vol 6 (2) ◽  
pp. 121-138
Author(s):  
Imad Ali Omar

Abstract: Water treatment plant (WTP) is essential for providing clean and safe water to the habitants. There is a necessity to evaluate the performance of (WTP) for proper treatment of raw water. The purpose of the present study is to evaluate the quality of treated water by investigating the performance of Ifraz-2 (WTP) units located in Erbil City, Iraq. For assessment of the (WTP) units, samples were taken for a duration of five months from different locations: raw water (the source), post-clarification processes, post-filtration processes, and from the storage tank. Removal efficiencies for the units, and for the whole (WTP) were calculated and presented. Obtained removal efficiencies for the sedimentation unit; filtration unit; and the entire Ifraz-2 (WTP) were 91.51 %, 64.71 %, and 97.29 %, respectively. After the process of disinfection and storage, the valued of the turbidity of the treated water were ranged from 1.2 to 9.7 (Nephelometric Turbidity Units) NTU. Besides, water quality index (WQI) for the (WTP) was studied and calculated for 14 physicochemical water quality parameters. WQI for Ifraz-2 (WTP) was 51.87 and it is regarded as a good level. Also, operational problems have been detected and reported during the research period, especially during sedimentation, filtration, and disinfection. Suitable solutions have been reported to the operational team.


2001 ◽  
Vol 1 (1) ◽  
pp. 9-16 ◽  
Author(s):  
R. Bayley ◽  
C.T. Ta ◽  
C.J. Sherwin ◽  
P.J. Renton

Thames Water treats approximately 2800MI/d of water originating mainly from the lowland rivers Thames and Lee for supply to over 7.3 million customers, principally in the cities of London and Oxford. Most of the river water sources are stored in bank-side, pumped, storage reservoirs prior to treatment for potable use. Storage reservoir sizes vary and typical theoretical retention times lie between a few days to several weeks or months. During storage the riverine biota is largely replaced by lacustrine taxa which can cause problems for subsequent water treatment, particularly filtration. Recent concerns about cyanobacterial toxins has heightened interest in reservoir management. This paper reviews aspects of Thames Water's research, design and operating experiences of managing eutrophic, algal rich, reservoir stored, lowland water. Areas covered include experiences of optimising reservoir water quality to both control algal productivity and to aid subsequent potable water treatment. Traditional reservoir management techniques are reviewed as is research into biomanipulation. Whilst changes in reservoir water quality using these techniques have been marked, actual retention time and quality changes have traditionally been difficult to predict. Computational fluid dynamic (CFD) modelling has been used successfully to substantially increase retention and subsequent changes to water quality. Information from CFD modelling may also be used to reduce risks from protozoan parasites such as Cryptosporidium and Giardia.


2018 ◽  
Vol 5 (2) ◽  
Author(s):  
Heru Dwi Wahjono

The need for clean water in big cities is very dependent on water supply by water companies (PDAM). The increasing demand for clean water in big cities is proportional to the increasing of number population and industry, but not comparable to the clean water supply and quality of raw water available. PDAM has made various efforts to improve the quality of clean water services to the community. One of the effort is to improve the performance of water treatment plant (WTP). To support the improvement of the performance of WTP, required water quality monitoring at the intake location in use. This paper discusses the online and realtime water quality monitoring at the water intake location using a multi-probe digital sensor and GSM technology. This observation data is used as a comparative data analysis of laboratory data on raw water source PDAM Taman Kota (Cengkareng Drain). Keywords: air baku air minum, intake PDAM Taman Kota Cengkareng Drain, pemantuan kualitas air, multi probe digital sensor, teknologi online monitoring, Water Treatment Plant


Author(s):  
S. Booyens ◽  
D. De Vos ◽  
Sandra Barnard ◽  
Leanne Coetzee

The aim of this project was to investigate the influence of the SolarBees and dosage on the water quality at Rietvlei Dam WTP. The difference between the raw and final water samples was less than anticipated due to the drastic improvement in raw water quality of Rietvlei Dam.


2019 ◽  
Vol 7 (2A) ◽  
Author(s):  
Adriana Muniz De Almeida Albuquerque

The water purification procedure aims to obtain a product appropriate for human consumption, minimizing the presence of contaminants and toxic substances present in the water. Among these contaminants, some radionuclides of natural origin, such as uranium, thorium and their descendants, have been identified. Studies have shown that the stages of purification are quite effective in removing the radionuclides contained in water. The removal is due to co-precipitation of the radionuclides with the suspended materials and the precipitated material is accumulated and characterized as a Technologically Concentrated Natural Occurrence Radioactive Material (TENORM) by the United States Environmental Protection Agency (USEPA). This residue can present significant levels of radioactivity and, when discarded in the environment without any treatment, can generate a problem of environmental impact and a risk to the health of the population. In this way, some gamma emitters of the series of U, Th and the K-40 were determined in the residues generated at the Potable Water Treatment Plants – PWTPs in six municipalities of Pernambuco. The results obtain corroborate the classification of the residues generated in the PWTPs as concentrators of the radioactive components contained in the water supplied to the system and reinforce the need for the release to the environment, which is the usual way of disposal of this waste, to be carried out only after considering the radiological protection standards established.


Sign in / Sign up

Export Citation Format

Share Document