scholarly journals A Novel Drug Delivery System Based on Nanoparticles of Magnetite Fe3O4 Embedded in an Auto Cross-Linked Chitosan

2020 ◽  
Author(s):  
Damiri Fouad ◽  
Yahya Bachra ◽  
Grouli Ayoub ◽  
Amine Ouaket ◽  
Ahmed Bennamara ◽  
...  

Recently, chitosan (CS) was given much attention as a functional biopolymer for designing various hydrogels for industrial, environmental and biomedical applications, but their biomedical use is limited due to the toxicity of the crosslinker agents. To overcome this inconvenience, we developed an auto cross-linked material based on a chitosan backbone that carries an amino and aldehyde moieties. This new drug delivery system (DDS) was designed by using oxidized chitosan (OCS) that crosslinks chitosan (CS). In the first part, a simple, rapid, low-cost and eco-friendly green method was introduced to synthesize magnetite nanoparticles (Fe3O4-NPs) successfully. These nanoparticles Fe3O4 have received a great deal of attention in the biomedical field. Especially in a targeted drug delivery system, drug-loaded Fe3O4-NPs can accumulate at the tumor site by the aid of an external magnetic field and increase the effectiveness of drug release to the tumor site. In the second part, we have incorporated the Fe3O4-NPs into chitosan/oxidized chitosan solution because of their unique magnetic properties, outstanding magnetism, biocompatibility, lower toxicity, biodegradability, and other features. Three drugs (5-Fluorouracil (5-FU), Caffeine and Ascorbic acid)) were embedded into the magnetite solution that became quickly a hydrogel. The successful fabrication of the hydrogels and ferrogels was confirmed by (FT-IR), (TGA), (SEM), (VSM) analysis at room temperature. Finally, results showed that our hydrogels and ferrogels may be technologically used as devices for drug delivery in a controllable manner.

2021 ◽  
Vol 21 ◽  
Author(s):  
Madhukar Garg ◽  
Anju Goyal ◽  
Sapna Kumari

: Cubosomes are highly stable nanostructured liquid crystalline dosage delivery form derived from amphiphilic lipids and polymer-based stabilizers converting it in a form of effective biocompatible carrier for the drug delivery. The delivery form comprised of bicontinuous lipid bilayers arranged in three dimensional honeycombs like structure provided with two internal aqueous channels for incorporation of number of biologically active ingredients. In contrast liposomes they provide large surface area for incorporation of different types of ingredients. Due to the distinct advantages of biocompatibility and thermodynamic stability, cubosomes have remained the first preference as method of choice in the sustained release, controlled release and targeted release dosage forms as new drug delivery system for the better release of the drugs. As lot of advancement in the new form of dosage form has bring the novel avenues in drug delivery mechanisms so it was matter of worth to compile the latest updates on the various aspects of mentioned therapeutic delivery system including its structure, routes of applications along with the potential applications to encapsulate variety drugs to serve health related benefits.


2020 ◽  
Vol 21 ◽  
Author(s):  
Sayed Md Mumtaz ◽  
Gautam Bhardwaj ◽  
Shikha Goswami ◽  
Rajiv Kumar Tonk ◽  
Ramesh K. Goyal ◽  
...  

: The Glioblastoma Multiforme (GBM; grade IV astrocytoma) exhort tumor of star-shaped glial cell in the brain. It is a fast-growing tumor that spreads to nearby brain regions specifically to cerebral hemispheres in frontal and temporal lobes. The etiology of GBM is unknown, but major risk factors are genetic disorder like neurofibromatosis and schwanomatosis which develop the tumor in the nervous system. The management of GBM with chemo-radio therapy leads to resistance and current drug regimen like Temozolomide (TMZ) is less efficacious. The reasons behind failure of drugs are due to DNA alkylation in cell cycle by enzyme DNA guanidase and mitochondrial dysfunction. Naturally occurring bio-active compounds from plants known as phytochemicals, serve as vital sources for anti-cancer drugs. Some typical examples include taxol analogs, vinca alkaloids such as vincristine, vinblastine, podophyllotoxin analogs, camptothecin, curcumin, aloe emodin, quercetin, berberine e.t.c. These phytochemicals often act via regulating molecular pathways which are implicated in growth and progression of cancers. However the challenges posed by the presence of BBB/BBTB to restrict passage of these phytochemicals, culminates in their low bioavailability and relative toxicity. In this review we integrated nanotech as novel drug delivery system to deliver phytochemicals from traditional medicine to the specific site within the brain for the management of GBM.


2017 ◽  
Vol 14 (3) ◽  
pp. 386-393 ◽  
Author(s):  
Ulya Badilli ◽  
C. Tuba Sengel-Turk ◽  
Gulin Amasya ◽  
Nilufer Tarimci

2020 ◽  
Vol 6 (4) ◽  
pp. 620-622 ◽  
Author(s):  
Dominic C. Grimberg ◽  
Ankeet Shah ◽  
Brant A. Inman

Author(s):  
Vijay R. Salunkhe ◽  
Prasanna S. Patil ◽  
Ganesh H. Wadkar ◽  
Somnath D. Bhinge

Herbal medicines have tremendous therapeutic potential that can explored across various effective drug delivery system. Decoctions, herbal teas, tinctures, glyceritum, oxymel, and use much soap, herbal tablets, herbal capsules, and herbal cream, herbal books, and prepared the confection of the most commonly available forms of dosage. The less use of herbal formulations in recent decades due to their lack of standardization. It is possible to use plant extract and isolated constituents to overcome this problem. But these phytoconstituents are suffering from drawbacks, mostly due to problems with stability and low lipid solubility. Novel drug delivery such as liposomes plays an important role in problem solving. Infact, compliance with the patient also improves. The review article discusses the recent status of new herbal liposomal formulations and describes the different ways in which these formulations are prepared.


Sign in / Sign up

Export Citation Format

Share Document