scholarly journals An Attempt in Blending Higher Volume of Ethanol with Diesel for Replacing the Neat Diesel to Fuel Compression Ignition Engines

2020 ◽  
Author(s):  
Prabakaran Balasubramanian

Alcohols are renewable in nature and can be manufactured from biomass. Butanol a higher alcohol, can be utilized as co-solvent to prevent the phase separation of diesel-ethanol blends as per the previous researches.. This experimentation has been conducted with the blends of diesel-ethanol with various proportions of n-butanol followed by the solubility test in the temperature range of 5–25°C. The results indicate that 45% of ethanol can be blended with diesel by the assistance of 10% of n-butanol to make the final blend stable up to a temperature of 5°C for 20 days, which met the requirements of the essential properties (ASTM). Existing diesel engine has been modified as per the optimal level of parameters such as intake air temperature (IAT), fuel injection timing (FIT), nozzle opening pressure (NOP) and compression ratio (CR) obtained using Taghuchi method of L9 orthogonal array. Arrived out parameters are 75°C of IAT, 29°before top dead centre of FIT, 210 bar of NOP and 19: 1 of compression ratio. The implementation of these parameters in diesel engine and fueling with diesel-ethanol butanol blend containing 45% ethanol produced closer performance and emissions characteristics compared to that of diesel. However, the emissions of smoke, hydrocarbon and carbon monoxide produced by the optimal blend are found to be marginally higher compared to that of diesel. These can be ratified by the introduction of after treatment systems modifications.

2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Datta Bharadwaz Yellapragada ◽  
Govinda Rao Budda ◽  
Kavya Vadavelli

Purpose The present work aims at improving the performance of the engine using optimized fuel injection strategies and operating parameters for plastic oil ethanol blends. To optimize and predict the engine injection and operational parameters, response surface methodology (RSM) and artificial neural networks (ANN) are used respectively. Design/methodology/approach The engine operating parameters such as load, compression ratio, injection timing and the injection pressure are taken as inputs whereas brake thermal efficiency (BTHE), brake-specific fuel consumption (BSFC), carbon monoxide (CO), hydrocarbons (HC), oxides of nitrogen (NOx) and smoke emissions are treated as outputs. The experiments are designed according to the design of experiments, and optimization is carried out to find the optimum operational and injection parameters for plastic oil ethanol blends in the engine. Findings Optimum operational parameters of the engine when fuelled with plastic oil and ethanol blends are obtained at 8 kg of load, injection pressure of 257 bar, injection timing of 17° before top dead center and blend of 15%. The engine performance parameters obtained at optimum engine running conditions are BTHE 32.5%, BSFC 0.24 kg/kW.h, CO 0.057%, HC 10 ppm, NOx 324.13 ppm and smoke 79.1%. The values predicted from ANN are found to be more close to experimental values when compared with the values of RSM. Originality/value In the present work, a comparative analysis is carried out on the prediction capabilities of ANN and RSM for variable compression ratio engine fuelled with ethanol blends of plastic oil. The error of prediction for ANN is less than 5% for all the responses such as BTHE, BSFC, CO and NOx except for HC emission which is 12.8%.


Energies ◽  
2019 ◽  
Vol 12 (21) ◽  
pp. 4023 ◽  
Author(s):  
Stefano d’Ambrosio ◽  
Alessandro Ferrari ◽  
Alessandro Mancarella ◽  
Salvatore Mancò ◽  
Antonio Mittica

An experimental investigation has been carried out to compare the performance and emissions of a low-compression-ratio Euro 5 diesel engine featuring high EGR rates, equipped with different injector technologies, i.e., solenoid, indirect-acting, and direct-acting piezoelectric. The comparisons, performed with reference to a state-of-the-art double fuel injection calibration, i.e., pilot-Main (pM), are presented in terms of engine-out exhaust emissions, combustion noise (CN), and fuel consumption, at low–medium engine speeds and loads. The differences in engine performance and emissions of the solenoidal, indirect-acting, and direct-acting piezoelectric injector setups have been found on the basis of experimental results to mainly depend on the specific features of their hydraulic circuits rather than on the considered injector driving system.


Energies ◽  
2021 ◽  
Vol 14 (15) ◽  
pp. 4442
Author(s):  
Branko Lalić ◽  
Andrijana Poljak ◽  
Gojmir Radica ◽  
Antonija Mišura

Knowing the process of generating exhaust emissions and the determination of influential parameters are important factors in improving two-stroke slow-speed marine engines, particularly for further reductions in fuel consumption and stringent regulations on the limitation of nitrogen oxide emissions. In this article, a model of a marine low-speed two-stroke diesel engine has been developed. Experimental and numerical analyses of the nitrogen monoxide formations were carried out. When measuring the concentration of nitrogen oxides in the exhaust emissions, the amount of nitrogen dioxide (NO2) is usually measured, because nitrogen monoxide is very unstable, and due to the large amount of oxygen in the exhaust gases, it is rapidly converted into nitrogen dioxide and its amount is included in the total emission of nitrogen oxides. In this paper, the most significant parameters for the formation of nitrogen monoxide have been determined. Model validation was performed based on measured combustion pressures, engine power, and concentrations of nitrogen oxides at 50% and 75% of maximum continuous engine load. The possibilities of fuel consumption optimization and reduction in nitrogen monoxide emissions by correcting the injection timing and changing the compression ratio were examined. An engine model was developed, based on measured combustion pressures and scavenging air flow, to be used on board by marine engineers for rapid analyses and determining changes in the concentration of nitrogen oxides in exhaust emissions. The amount of nitrogen oxide in exhaust emissions is influenced by the relevant features described in this paper: fuel injection timing and engine compression ratio. The presented methodology provides a basis for further research about the simultaneous impact of changing the injection timing and compression ratio, exhaust valve opening and closing times, as well as the impact of multiple fuel injection to reduce consumption and maintain exhaust emissions within the permissible limits.


2010 ◽  
Vol 7 (2) ◽  
pp. 399-406 ◽  
Author(s):  
M. Venkatraman ◽  
G. Devaradjane

In the present investigation, tests were carried out to determine engine performance, combustion and emissions of a naturally aspirated direct injection diesel engine fueled with diesel and Jatropha Methyl ester and their blends (JME10, JME20 and JME30). Comparison of performance and emission was done for different values of compression ratio, injection pressure and injection timing to find best possible combination for operating engine with JME. It is found that the combined compression ratio of 19:1, injection pressure of 240 bar and injection timing of 27?bTDC increases the BTHE and reduces BSFC while having lower emissions.From the investigation, it is concluded that the both performance and emissions can considerably improved for Methyl ester of jatropha oil blended fuel JME20 compared to diesel.


Author(s):  
Raj Kumar ◽  
Yan Wang ◽  
Ryan Vojtech ◽  
James Cigler

Abstract Future diesel engine legislations are focused on further improvements in green-house gas emissions, such as carbon dioxide while additionally pushing for lower NOx emissions levels. These are being achieved with a combination of base-engine, fuel-injection system, air-system and after-treatment system improvements. In this paper, the effect of one injection system characteristics, namely injector flow-rate was investigated on engine performance and emissions using both numerical and experimental techniques. The phenomenon of increasing injector flow was first numerically investigated using commercial code Converge. Two approaches to increasing injector flow-rate were investigated. The first approach was by increasing the injector nozzle hole size while keeping the number of holes constant. The second approach was to change the number of the holes while keeping the injector nozzle size fixed. These simulations led to procurement of injectors to validate the simulation trends. Engine tests were performed with Navistar’s 12.4 L multi-cylinder heavy-duty diesel engine. The identified nozzle flow rates included a 66% increase from that of the baseline case. All the engine tests were performed at the typical cruising condition for this engine, at a series of injection timing and injection pressure values. It was observed that the crank angle for 50% of the integrated total calculated heat release (CA50) for the fuel burned was the most important factor that influenced the brake-thermal efficiency (BTE) and different injectors had similar BTE at constant CA50. With regards to emission, at higher nozzle flow rates, the combustion showed a slightly higher propensity for soot and increased levels of carbon monoxide.


Sign in / Sign up

Export Citation Format

Share Document