scholarly journals Regeneration of Dentin Using Stem Cells Present in the Pulp

2021 ◽  
Author(s):  
Toshiyuki Kawakami ◽  
Kiyofumi Takabatake ◽  
Hotaka Kawai ◽  
Keisuke Nakano ◽  
Hidetsugu Tsujigiwa ◽  
...  

Dentin is one of the major hard tissues of the teeth. Dentin is similar to bone in texture, but it is different from bone tissue histologically. It is formed by odontoblasts; however, these cells are present in a limited area in the human body and are not found anywhere other than the dental pulp. It is difficult to collect and proliferate mature odontoblasts for regenerative medicine. However, odontoblast are necessary for regenerating dentin. It is known that odontoblasts differentiate from mesenchymal stem cells in the dental pulp during tooth development. Dentin can be generated using the stem cells present in the pulp. Many stem cells are recruited from the bone marrow to the teeth, and it is possible that the stem cells present in the pulp are also supplied from the bone marrow. Herein, we explain the mechanism of stem cell supply to the teeth and the possibility of dentin regeneration by specific cell differentiation induction methods.

2011 ◽  
Vol 136 (4) ◽  
pp. 455-473 ◽  
Author(s):  
Erdal Karaöz ◽  
Pınar Cetinalp Demircan ◽  
Özlem Sağlam ◽  
Ayca Aksoy ◽  
Figen Kaymaz ◽  
...  

2014 ◽  
Vol 08 (03) ◽  
pp. 307-313 ◽  
Author(s):  
Deepa Ponnaiyan ◽  
Visakan Jegadeesan

ABSTRACT Objective: Bone marrow (BM) is the most utilized and well-studied source of stem cells. Stem cells from dental tissues have provided an alternate source of mesenchymal stem cells (MSCs). Dental pulp stem cells (DPSCs) have been shown to share a similar pattern of protein expression with BMMSCs in vitro. However, differences have been noted between DPSCs and BMMSCs. This study focuses on variation in expression of stem cell and differentiation markers between DPSCs and BMMSCs. Materials and Methods: The two stem cells were isolated and compared for clonogenic potential, growth characteristics, multipotency, and stem cell marker expression. Specifically, the fatty acid binding protein 4, perilipin, alkaline phosphatase and osteonectic gene expression was analyzed by real-time polymerase chain reaction to confirm the capacity for adipogenic and osteogenic differentiation. Results: MSCs from these cell sources were similar in their morphology and immune phenotype except for the expression of CD105. Growth curves and colony formation assay revealed proliferation rate of DPSCs was significantly faster than BMMSCs (P < 0.05). DPSCs appeared less able to differentiate into adipogenic lineage, although more able to differentiate into osteogenic lineage. Conclusion: Data from the present study indicate how DPSCs are different from BMMSCs though they are a population of MSCs. DPSCs are a novel population of MSCs as observed by their unique expression of differentiation and lineage specific genes. Further microarray analysis could be used to determine, which genes are differentially regulated in BMMSCs and DPSCs to establish uniqueness of each population of MSCs.


Proceedings ◽  
2018 ◽  
Vol 2 (25) ◽  
pp. 1592
Author(s):  
Sevil Özer ◽  
H. Seda Vatansever ◽  
Feyzan Özdal-Kurt

Bone marrow mesenchymal stem cells (BM-MSCs) are used to repair hypoxic or ischemic tissue. After hypoxic the level of ATP is decreases, cellular functions do not continue and apoptosis or necrosis occur. Apoptosis is a progress of programmed cell death that occurs in normal or pathological conditions. In this study, we were investigated the hypoxic effect on apoptosis in mesenchymal stem cell. Bone marrow-derived stem cells were cultured in hypoxic (1% or 3%) or normoxic conditions 24, 96 well plates for 36 h. Cell viability was shown by MTT assay on 36 h. After fixation of cells with 4% paraformaldehyde, distributions of caspase-3, Bcl-2 and Bax with indirect immunoperoxidase technique, apoptotic cells with TUNEL assay were investigated. All staining results were evaluated using H-score analyses method with ANOVA, statistically. As a result, hypoxic condition was toxic for human mesenchymal stem cells and the number of death cell was higher in that than normoxic condition.


2015 ◽  
Vol 2015 ◽  
pp. 1-15 ◽  
Author(s):  
Jurate Savickiene ◽  
Grazina Treigyte ◽  
Sandra Baronaite ◽  
Giedre Valiuliene ◽  
Algirdas Kaupinis ◽  
...  

Human amniotic fluid stem cells have become an attractive stem cell source for potential applications in regenerative medicine and tissue engineering. The aim of this study was to characterize amniotic fluid-derived mesenchymal stem cells (AF-MSCs) from second- and third-trimester of gestation. Using two-stage protocol, MSCs were successfully cultured and exhibited typical stem cell morphological, specific cell surface, and pluripotency markers characteristics. AF-MSCs differentiated into adipocytes, osteocytes, chondrocytes, myocytes, and neuronal cells, as determined by morphological changes, cell staining, and RT-qPCR showing the tissue-specific gene presence for differentiated cell lineages. Using SYNAPT G2 High Definition Mass Spectrometry technique approach, we performed for the first time the comparative proteomic analysis between undifferentiated AF-MSCs from late trimester of gestation and differentiated into myogenic, adipogenic, osteogenic, and neurogenic lineages. The analysis of the functional and expression patterns of 250 high abundance proteins selected from more than 1400 demonstrated the similar proteome of cultured and differentiated AF-MSCs but the unique changes in their expression profile during cell differentiation that may help the identification of key markers in differentiated cells. Our results provide evidence that human amniotic fluid of second- and third-trimester contains stem cells with multilineage potential and may be attractive source for clinical applications.


2021 ◽  
Author(s):  
Dhruv Mahendru ◽  
Ashish Jain ◽  
Seema Bansal ◽  
Deepti Malik ◽  
Neha Dhir ◽  
...  

Aim: The aim of the study was to evaluate the neuroprotective effect of bone marrow stem cell secretome in the 6-hydroxydopamine (6-OHDA) model of Parkinson's disease. Materials & methods: Secretome prepared from mesenchymal stem cells of 3-month-old rats was injected daily for 7 days between days 7 and 14 after 6-OHDA administration. After 14 days, various neurobehavioral parameters were conducted. These behavioral parameters were further correlated with biochemical and molecular findings. Results & conclusion: Impaired neurobehavioral parameters and increased inflammatory, oxidative stress and apoptotic markers in the 6-OHDA group were significantly modulated by secretome-treated rats. In conclusion, mesenchymal stem cells-derived secretome could be further explored for the management of Parkinson's disease.


2018 ◽  
Vol 2018 ◽  
pp. 1-11 ◽  
Author(s):  
Chengguang Wu ◽  
Long Chen ◽  
Yi-zhou Huang ◽  
Yongcan Huang ◽  
Ornella Parolini ◽  
...  

Human multipotent stem cell-based therapies have shown remarkable potential in regenerative medicine and tissue engineering applications due to their abilities of self-renewal and differentiation into multiple adult cell types under appropriate conditions. Presently, human multipotent stem cells can be isolated from different sources, but variation among their basic biology can result in suboptimal selection of seed cells in preclinical and clinical research. Thus, the goal of this study was to compare the biological characteristics of multipotent stem cells isolated from human bone marrow, placental decidua basalis, and urine, respectively. First, we found that urine-derived stem cells (USCs) displayed different morphologies compared with other stem cell types. USCs and placenta decidua basalis-derived mesenchymal stem cells (PDB-MSCs) had superior proliferation ability in contrast to bone marrow-derived mesenchymal stem cells (BMSCs); these cells grew to have the highest colony-forming unit (CFU) counts. In phenotypic analysis using flow cytometry, similarity among all stem cell marker expression was found, excluding CD29 and CD105. Regarding stem cell differentiation capability, USCs were observed to have better adipogenic and endothelial abilities as well as vascularization potential compared to BMSCs and PDB-MSCs. As for osteogenic and chondrogenic induction, BMSCs were superior to all three stem cell types. Future therapeutic indications and clinical applications of BMSCs, PDB-MSCs, and USCs should be based on their characteristics, such as growth kinetics and differentiation capabilities.


2013 ◽  
Vol 378 ◽  
pp. 235-238 ◽  
Author(s):  
Jun Qiu ◽  
Zhuo Zhuang ◽  
Bo Huo

The mechanical stimulation from extracellular matrix could regulate physiological behavior of cells through the mechanism of mechanotransduction. Previous researches had shown that apoptosis could be regulated by the size of the cell adhesion area.However, the regulation of cell apoptosis by different adhesion shape with the same area is still unclear. This workfocused on the regulation of apoptosis for bone marrow mesenchymal stem cells (MSCs) by different circularity and area of adhesion geometry. We manufactured micro-pattern surface which was suitable for adhesion of MSCs by the technique of micro-contact printing. Three typesof geometry for individual is land of micro-pattern were designed. We adopted terminal-deoxynucleoitidyl transfer as emediated nick end labeling (TUNEL) method to detectcell apoptosis. This research shows that the adhesion geometry which has smaller area and greater circularity will promote apoptosis of MSCs. This indicates that MSCsmay prefer to live on the surface without any restrict. Ourstudies focused on the significantly important problem about interaction between extracellular matrix and physiological behavior of mesenchymal stem cells.


Sensors ◽  
2018 ◽  
Vol 18 (9) ◽  
pp. 3007 ◽  
Author(s):  
Junya Yoshioka ◽  
Yu Ohsugi ◽  
Toru Yoshitomi ◽  
Tomoyuki Yasukawa ◽  
Naoki Sasaki ◽  
...  

Bone marrow-derived mesenchymal stem cells (BMSCs) are an important cell resource for stem cell-based therapy, which are generally isolated and enriched by the density-gradient method based on cell size and density after collection of tissue samples. Since this method has limitations with regards to purity and repeatability, development of alternative label-free methods for BMSC separation is desired. In the present study, rapid label-free separation and enrichment of BMSCs from a heterogeneous cell mixture with bone marrow-derived promyelocytes was successfully achieved using a dielectrophoresis (DEP) device comprising saw-shaped electrodes. Upon application of an electric field, HL-60 cells as models of promyelocytes aggregated and floated between the saw-shaped electrodes, while UE7T-13 cells as models of BMSCs were effectively captured on the tips of the saw-shaped electrodes. After washing out the HL-60 cells from the device selectively, the purity of the UE7T-13 cells was increased from 33% to 83.5% within 5 min. Although further experiments and optimization are required, these results show the potential of the DEP device as a label-free rapid cell isolation system yielding high purity for rare and precious cells such as BMSCs.


Sign in / Sign up

Export Citation Format

Share Document