scholarly journals Seasonal Variability of Groundwater Quality in Kapas Island, Terengganu, Malaysia

2021 ◽  
Author(s):  
Mohmadisa Hashim ◽  
Arijatul Wardah Ahmad ◽  
Zahid Mat Said ◽  
Nasir Nayan ◽  
Hanifah Mahat ◽  
...  

The chapter aims to evaluate the groundwater quality levels in Kapas Island, Terengganu, Malaysia during the monsoon changes of the Southwest Monsoon (SWM), Monsoon Transition (MT) and Northeast Monsoon (NEM) in 2018. Four locations were used for groundwater sampling namely, the Kapas Coral Beach Resort, Kapas Beach Chalet, Pak Ya Seaview Chalet, and Kapas Island Resort. Three water samplings at each station for every month in the monsoon. Six parameters of the Malaysian Water Quality Index (WQI), i.e., dissolved oxygen (DO), pH, biochemical oxygen demand (BOD), chemical oxygen demand (COD), total suspended solids (TSS) and ammoniacal nitrogen (NH3-N), were used to evaluate the water quality. The findings showed the groundwater quality parameters are in Class I and II. However, according to WQI Malaysia, the water quality status during the three monsoons is slightly polluted. During the SWM, the WQI value was 76 (Class III), the MT was 77 (Class II), and the NEM was WQI 71 (Class III). Given this status, it requires more intensive water treatment as it is not suitable for direct drinking water supply. The implications of the study show that the quality of groundwater in Kapas Island has to improve by the tour operators.

2010 ◽  
Vol 3 (1) ◽  
pp. 151 ◽  
Author(s):  
S. Islam ◽  
T. Rasul ◽  
J. Bin Alam ◽  
M. A. Haque

The Titas River, a trans-boundary river of Bangladesh flows almost the entire Brahmanbaria district, consumes a huge amount of sewage, agricultural discharges and runoff, waste produced from human excreta, discharges of two oil mills and contaminants from other minor sources. A study is conducted to find the water quality status of the river during the period from July 2008 to June 2009 and by using National Sanitation Foundation (NSF) water quality index, the probable use of this water is predicted. This work consists of laboratory tests for the evaluation of some water quality parameters of the Titas and to identify its probable use in various purposes. The results of the laboratory tests and NSF water quality index suggest that the water can be used for recreation, pisciculture and irrigation purposes but requires treatment before using for drinking.Keywords: Water pollution; Faecal coliform; Dissolved oxygen (DO); Biochemical oxygen demand (BOD).© 2011 JSR Publications. ISSN: 2070-0237 (Print); 2070-0245 (Online). All rights reserved.doi:10.3329/jsr.v3i1.6170                 J. Sci. Res. 3 (1), 151-159 (2011)


2020 ◽  
Vol 16 (3) ◽  
pp. 178
Author(s):  
Arniza Fitri ◽  
Khairul Nizam Abdul Maulud ◽  
Dian Pratiwi ◽  
Arlina Phelia ◽  
Farli Rossi ◽  
...  

The issues of freshwater pollutions and the high demand of clean freshwater for daily human activities have forced developing countries such as Malaysia to continuously monitor the quality of the freshwater. The present study objective is to present the trend of water quality status in the Kelantan River downstream, Peninsular Malaysia from 2005 to 2018. Water samples were collected during dry and monsoon seasons from a sampling station located at downstream of the Kelantan River. Water quality parameters such as temperature, pH and dissolved oxygen (DO) were measured in situ while other parameters were analysed in the laboratory based on retrieved water samples. Water quality status was determined based on National Water Quality Standard (NWQS) for River in Malaysia by calculating the water quality index (WQI) according to the concentration of six water quality parameters involving pH, dissolved oxygen (DO), biochemical oxygen demand (BOD), chemical oxygen demand (COD), suspended solids (TSS) and Ammonia Nitrogen (AN). The results showed that Kelantan River had good water quality during the dry season classified in Class II at 2005. The water quality was found to be slightly lower during the monsoon season in year 2006. In addition, increasing the number of construction, human activities in the land use areas, land use changes and the sewage water from domestic, industrial, wet market and food outlets in the Kelantan State have declined the water quality in Kelantan River from Class II (in 2005) to Class III (in 2010 and 2011) and to become Class IV in 2017 to 2018. The results of the present study are expected to give valuable information for the water managers in order to deal with better strategies in controlling the quality of freshwater at the Kelantan River and minimize the incidence of pollution-oriented problems, thus the water can be utilized for various water uses with appropriate quality.


2013 ◽  
Vol 838-841 ◽  
pp. 1698-1702
Author(s):  
Zhi Gang Chen ◽  
Jun Jing Chen ◽  
Han Xiang Chen ◽  
Qing Jie Xie

The water quality of the Jinshan Lake in Zhen Jiang city were evaluated mainly on the basis of forty samples collected from four locations.The purposes of the study were to assess the levels of parameters associated with the demands of the functions of the water body and to compare them with Environmental Quality Standards for Surface Water. Water quality parameters included pH, Temperature, Biological Oxygen Demand (BOD5), Chemical Oxygen Demand (CODMn), permanganate index, Total Nitrogen (TN), Total Phosphorus (TP), and NH3-N were analyzed. These water quality parameters were surveyed in 2012 on a monthly basis.Most of them met the Class Ⅲ level of Environmental Quality Standards for Surface Water excepting the Total Nitrogen and Total Phosphorus.The results show that the phenomenon of eutrophication existed in the the Jinshan Lake in 2012.


2021 ◽  
Vol 11 (7) ◽  
Author(s):  
Sadik Mahammad ◽  
Aznarul Islam

AbstractIn recent years, groundwater pollution has become increasingly a serious environmental problem throughout the world due to increasing dependency on it for various purposes. The Damodar Fan Delta is one of the agriculture-dominated areas in West Bengal especially for rice cultivation and it has a serious constraint regarding groundwater quantity and quality. The present study aims to evaluate the groundwater quality parameters and spatial variation of groundwater quality index (GWQI) for 2019 using the fuzzy analytic hierarchy process (FAHP) method. The 12 water quality parameters such as pH, TDS, iron (Fe−) and fluoride (F−), major anions (SO42−, Cl−, NO3−, and HCO3−), and cations (Na+, Ca2+, Mg2+, and K+) for the 29 sample wells of the study area were used for constructing the GWQI. This study used the FAHP method to define the weights of the different parameters for the GWQI. The results reveal that the bicarbonate content of 51% of sample wells exceeds the acceptable limit of drinking water, which is maximum in the study area. Furthermore, higher concentrations of TDS, pH, fluoride, chloride, calcium, magnesium, and sodium are found in few locations while nitrate and sulfate contents of all sample wells fall under the acceptable limits. The result shows that 13.79% of the samples are excellent, 68.97% of the samples are very good, 13.79% of the samples are poor, and 3.45% of the samples are very poor for drinking purposes. Moreover, it is observed that very poor quality water samples are located in the eastern part and the poor water wells are located in the northwestern and eastern part while excellent water quality wells are located in the western and central part of the study area. The understanding of the groundwater quality can help the policymakers for the proper management of water resources in the study area.


2018 ◽  
Vol 19 (5) ◽  
pp. 1287-1294 ◽  
Author(s):  
Nuanchan Singkran ◽  
Pitchaya Anantawong ◽  
Naree Intharawichian ◽  
Karika Kunta

Abstract Land use influences and trends in water quality parameters were determined for the Chao Phraya River, Thailand. Dissolved oxygen (DO), biochemical oxygen demand (BOD), and nitrate-nitrogen (NO3-N) showed significant trends (R2 ≥ 0.5) across the year, while total phosphorus (TP) and faecal coliform bacteria (FCB) showed significant trends only in the wet season. DO increased, but BOD, NO3-N, and TP decreased, from the lower section (river kilometres (rkm) 7–58 from the river mouth) through the middle section (rkm 58–143) to the upper section (rkm 143–379) of the river. Lead and mercury showed weak/no trends (R2 < 0.5). Based on the river section, major land use groups were a combination of urban and built-up areas (43%) and aquaculture (21%) in the lower river basin, paddy fields (56%) and urban and built-up areas (21%) in the middle river basin, and paddy fields (44%) and other agricultural areas (34%) in the upper river basin. Most water quality and land use attributes had significantly positive or negative correlations (at P ≤ 0.05) among each other. The river was in crisis because of high FCB concentrations. Serious measures are suggested to manage FCB and relevant human activities in the river basin.


Author(s):  
Nguyen Hai Au ◽  
Tran Minh Bao ◽  
Pham Thi Tuyet Nhi ◽  
Tat Hong Minh Vy ◽  
Truong Tan Hien ◽  
...  

Groundwater in Phu My town is exploited essentially in Pleistocene aquifer and, used for many purposes like irrigation, domestic, production and animal husbandry. In this study, Groundwater Quality Index (EWQI) is calculated with Entropy weight method to determine the suitability of groundwater quality in study area. This method demonstrates the objectivity of each parameter calculated based on the degree of variability of each value and depends on the sample data source. The groundwater samples were collected from 17 wells in dry and wet seasons in 2017 with ten water quality parameters (pH, TDS, TH, Cl-, F-, NH4+-N, NO3--N, SO42-, Pb và Fe2+) were selected for analysising. The analysis results indicate groundwater quality is divided into 4 categories in this study area. In particular, over 70% of wells are "very good" water quality in both dry and wet seasons. Only 6% of wells are " water unsuitable for drinking purpose" of the total number of mornitoring wells in the study area.


Author(s):  
Vasudha Lingampally ◽  
V.R. Solanki ◽  
D. L. Anuradha ◽  
Sabita Raja

In the present study an attempt has been made to evaluate water quality and related density of Cladocerans for a period of one year, October 2015 to September 2016. Water quality parameters such as temperature, PH, total dissolved solids, dissolved oxygen, biological oxygen demand, total alkalinity, total hardness, chlorides, phosphates, and nitrates are presented here to relate with the abundance of Cladocerans. The Cladoceran abundance reflects the eutrophic nature of the Chakki talab.


2021 ◽  
Vol 12 (2) ◽  
Author(s):  
V Strokal ◽  
◽  
A Kovpak ◽  

Novelties of this study include a synthesis of water quality parameters for the upstream sub-basin of the Dnieper River. This upstream sub-basin includes the Desna River. The synthesis revels new insights on the sources of the water pollution and the status of the water quality for different purposes such as drinking, aquaculture and recreation. The main research objective was to identify the main sources of water pollution and how those sources could decrease the water quality. As a result of our analysis, we conclude the following. The levels of ammonium-nitrogen and nitrite-nitrogen in the Desna River (upstream sub-basin) are by 2-43 times and up to 53 times higher than the water quality thresholds, respectively. This poses a risk for recreational activities since too much nutrients often lead to blooms of harmful algae. We also find an increased level of biological oxygen demand in the river for drinking purposes. For aquaculture, decreased levels of dissolved oxygen are found. Climate change has an impact on water quality. For example, extreme floods caused by too much precipitation can bring pollutants to nearby waters. Monthly average temperature has increased by +2.7 degrees contributing to increased microbiological processes that could stimulate blooms of harmful algae. Main sources of water pollution are sewage discharges in cities, agricultural runoff and erosion activities after floods.


2014 ◽  
Vol 955-959 ◽  
pp. 3310-3313
Author(s):  
Qiao Ling Du ◽  
Zeng Hua Ren ◽  
Zhen Ze Liu ◽  
Yi Ding Wang

In this paper a fuzzy logic prediction method is proposed to assess water quality status of a reservoir in northeast China through wireless sensor networks. This model was used to analyze the historical data that were collected monthly by local monitoring stations and predict water quality level. Six water quality parameters of BOD5, COD, fluoride, ammonia, total phosphorus (TP), and total nitrogen (TN) were monitored from 2011 to 2012. This result indicated that the methodology adopted in this study was basically an attractive alternative, offering a relatively fast algorithm to predict the water quality parameters.


Water ◽  
2020 ◽  
Vol 12 (4) ◽  
pp. 1115 ◽  
Author(s):  
Ehsan Maskooni ◽  
Mehran Naseri-Rad ◽  
Ronny Berndtsson ◽  
Kei Nakagawa

Groundwater is a major source of drinking and agricultural water supply in arid and semiarid regions. Poor groundwater quality can be a threat to human health especially when it is combined with hazardous pollutants like heavy metals. In this study, an innovative method involving entropy weighted groundwater quality index for both physicochemical and heavy metal content was used for a semiarid region. The entropy weighted index was used to assess the groundwater’s suitability for drinking and irrigation purposes. Thus, groundwater from 19 sampling sites was used for analyses of physicochemical properties (electrical conductivity—EC, pH, K+, Ca2+, Na+, SO42−, Cl−, HCO3−, TDS, NO3−, F−, biochemical oxygen demand—BOD, dissolved oxygen—DO, and chemical oxygen demand—COD) and heavy metal content (As, Ca, Sb, Se, Zn, Cu, Ba, Mn, and Cr). To evaluate the overall pollution status in the region, heavy metal indices such as the modified heavy metal pollution index (m-HPI), heavy metal evaluation index (HEI), Nemerow index (NeI), and ecological risks of heavy metals (ERI) were calculated and compared. The results showed that Cd concentration plays a significant role in negatively affecting the groundwater quality. Thus, three wells were classified as poor water quality and not acceptable for drinking water supply. The maximum concentration of heavy metals such as Cd, Se, and Sb was higher than permissible limits by the World Health Organization (WHO) standards. However, all wells except one were suitable for agricultural purposes. The advantage of the innovative entropy weighted groundwater quality index for both physicochemical and heavy metal content, is that it permits objectivity when selecting the weights and reduces the error that may be caused by subjectivity. Thus, the new index can be used by groundwater managers and policymakers to better decide the water’s suitability for consumption.


Sign in / Sign up

Export Citation Format

Share Document