scholarly journals Pathway Analysis of Metabolic Syndrome Using a Genome-Wide Association Study of Korea Associated Resource (KARE) Cohorts

2014 ◽  
Vol 12 (4) ◽  
pp. 195 ◽  
Author(s):  
Unjin Shim ◽  
Han-Na Kim ◽  
Yeon-Ah Sung ◽  
Hyung-Lae Kim
Biomolecules ◽  
2019 ◽  
Vol 9 (8) ◽  
pp. 321 ◽  
Author(s):  
Gauri Prasad ◽  
Khushdeep Bandesh ◽  
Anil Giri ◽  
Yasmeen Kauser ◽  
Prakriti Chanda ◽  
...  

Indians, a rapidly growing population, constitute vast genetic heterogeneity to that of Western population; however they have become a sedentary population in past decades due to rapid urbanization ensuing in the amplified prevalence of metabolic syndrome (MetS). We performed a genome-wide association study (GWAS) of MetS in 10,093 Indian individuals (6617 MetS and 3476 controls) of Indo-European origin, that belong to our previous biorepository of The Indian Diabetes Consortium (INDICO). The study was conducted in two stages—discovery phase (N = 2158) and replication phase (N = 7935). We discovered two variants within/near the CETP gene—rs1800775 and rs3816117—associated with MetS at genome-wide significance level during replication phase in Indians. Additional CETP loci rs7205804, rs1532624, rs3764261, rs247617, and rs173539 also cropped up as modest signals in Indians. Haplotype association analysis revealed GCCCAGC as the strongest haplotype within the CETP locus constituting all seven CETP signals. In combined analysis, we perceived a novel and functionally relevant sub-GWAS significant locus—rs16890462 in the vicinity of SFRP1 gene. Overlaying gene regulatory data from ENCODE database revealed that single nucleotide polymorphism (SNP) rs16890462 resides in repressive chromatin in human subcutaneous adipose tissue as characterized by the enrichment of H3K27me3 and CTCF marks (repressive gene marks) and diminished H3K36me3 marks (activation gene marks). The variant displayed active DNA methylation marks in adipose tissue, suggesting its likely regulatory activity. Further, the variant also disrupts a potential binding site of a key transcription factor, NRF2, which is known for involvement in obesity and metabolic syndrome.


2013 ◽  
Vol 115 (9) ◽  
pp. 1343-1359 ◽  
Author(s):  
Sujoy Ghosh ◽  
Juan C. Vivar ◽  
Mark A. Sarzynski ◽  
Yun Ju Sung ◽  
James A. Timmons ◽  
...  

We previously reported the findings from a genome-wide association study of the response of maximal oxygen uptake (V̇o2max) to an exercise program. Here we follow up on these results to generate hypotheses on genes, pathways, and systems involved in the ability to respond to exercise training. A systems biology approach can help us better establish a comprehensive physiological description of what underlies V̇o2maxtrainability. The primary material for this exploration was the individual single-nucleotide polymorphism (SNP), SNP-gene mapping, and statistical significance levels. We aimed to generate novel hypotheses through analyses that go beyond statistical association of single-locus markers. This was accomplished through three complementary approaches: 1) building de novo evidence of gene candidacy through informatics-driven literature mining; 2) aggregating evidence from statistical associations to link variant enrichment in biological pathways to V̇o2max trainability; and 3) predicting possible consequences of variants residing in the pathways of interest. We started with candidate gene prioritization followed by pathway analysis focused on overrepresentation analysis and gene set enrichment analysis. Subsequently, leads were followed using in silico analysis of predicted SNP functions. Pathways related to cellular energetics (pantothenate and CoA biosynthesis; PPAR signaling) and immune functions (complement and coagulation cascades) had the highest levels of SNP burden. In particular, long-chain fatty acid transport and fatty acid oxidation genes and sequence variants were found to influence differences in V̇o2max trainability. Together, these methods allow for the hypothesis-driven ranking and prioritization of genes and pathways for future experimental testing and validation.


Gene ◽  
2013 ◽  
Vol 525 (1) ◽  
pp. 107-115 ◽  
Author(s):  
Young Ho Lee ◽  
Jae-Hoon Kim ◽  
Gwan Gyu Song

Sign in / Sign up

Export Citation Format

Share Document