scholarly journals Comparison of Peak Pressure, Maximum Force, Contact Area, and Contact Time Between the Right and Left Foot in Elite Weightlifters

Author(s):  
Hasan Pirani ◽  
Mohammad Azizi
2011 ◽  
Vol 101 (5) ◽  
pp. 415-423 ◽  
Author(s):  
Ana Paula Ribeiro ◽  
Francis Trombini-Souza ◽  
Isabel de Camargo Neves Sacco ◽  
Rodrigo Ruano ◽  
Marcelo Zugaib ◽  
...  

Background: The intention of this investigation was to longitudinally describe and compare the plantar pressure distribution in orthostatic posture and gait throughout pregnancy. Methods: A prospective longitudinal observational study was conducted with six pregnant women (mean ± SD age, 32 ± 3 years) with a mean ± SD weight gain of 10.0 ± 1.4 kg. Peak pressure, contact time, contact area, and maximum force in five plantar areas were evaluated using capacitive insoles during gait and orthostatic posture. For 1 year, the plantar pressures of pregnant women were evaluated the last month of each trimester. Comparisons among plantar areas and trimesters were made by analysis of variance. Results: For orthostatic posture, no differences in contact time, contact area, peak pressure, and maximum force throughout the trimesters were found. During gait, peak pressure and maximum force of the medial rearfoot were reduced from the first to third and second to third trimesters. Maximum force increased at the medial forefoot from the first to second trimester. Contact area increased at the lateral rearfoot from the second to third trimester and at the midfoot from the first to third trimester. Contact time increased at the midfoot and medial and lateral forefoot from the first to third trimester. Conclusions: Pregnant women do not alter plantar pressure during orthostatic posture, but, during gait, the plantar loads were redistributed from the rearfoot (decrease) to the midfoot and forefoot (increase) throughout pregnancy. These adjustments help maintain the dynamic stability of the pregnant woman during locomotion. (J Am Podiatr Med Assoc 101(5): 415–423, 2011)


2018 ◽  
Vol 108 (5) ◽  
pp. 355-361 ◽  
Author(s):  
Helen Branthwaite ◽  
Gemma Grabtree ◽  
Nachiappan Chockalingam ◽  
Andrew Greenhalgh

Background: Weakness of the toe flexor muscles has been attributed to the development of toe pathologies, and it responds well in the clinic to toe grip exercises. However, it is unknown whether exercising the toe flexor muscles improves the ability to grip and alter function. The aim of this study was to assess the effect of toe flexor exercises on apical plantar pressure, as a measure of grip, while seated and during gait. Methods: Twenty-three individuals with no known toe pathologies were recruited. Static peak pressure, time spent at peak pressure, and pressure-time integral while seated, as well as dynamic forefoot maximal force, contact area, and percentage contact time, were recorded before and after exercise. Toe grip exercises with a therapy ball were completed daily for 6 weeks. Results: Static peak pressure significantly increased after exercise on the apex of the second and third digits, as did the pressure-time integral. Dynamic peak force and contact area did not alter after exercise around the metatarsals and toes, yet percentage contact time significantly increased for each metatarsal after completing daily toe grip exercises. Conclusions: Exercises to improve the grip ability of the toes increased the static peak pressure on the apex of the second and third digits as well as the percentage contact time of the metatarsals during gait. The ability to increase apical peak pressure and contact time after exercises could assist in improving forefoot stability and gait efficiency and in reducing toe pathology progression.


2008 ◽  
Vol 98 (4) ◽  
pp. 261-267 ◽  
Author(s):  
Erin E. Klein ◽  
Ryan T. Crews ◽  
Stephanie C. Wu ◽  
James S. Wrobel ◽  
David G. Armstrong

Background: Exercise has not been studied extensively in persons with active neuropathic diabetic foot wounds, primarily because a device does not exist that allows patients to exercise while sufficiently off-loading pressure at the ulcer site. The purpose of this project was to demonstrate a device that reduces cycling plantar forefoot pressure. Methods: Ten healthy participants rode a recumbent bicycle under three cycling conditions. While the left foot interaction remained constant with a standard gym shoe and pedal, the right foot was exposed to a control condition with standard gym shoe and pedal, gym shoe and specialized cleat, and gym shoe with an off-loading insole and specialized cleat. Pressure and contact area of the plantar aspect of the feet were recorded for a 10-sec interval once during each minute of each condition’s 7-min trial. Results: The off-loading insole and specialized cleat condition yielded significantly lower (P < .01) peak pressure, contact area, and pressure–time integral values in the forefoot than the specialized cleat condition with gym shoe, which yielded significantly lower values (P < .01) than the standard gym shoe and pedal. Conclusion: Modifications to footwear may alter plantar forefoot pressures, contact area, and pressure–time integrals while cycling. The CLEAR Cleat could play a significant role in the facilitation of fitness in patients with (or at high risk for) neuropathic wounds. (J Am Podiatr Med Assoc 98(4): 261–267, 2008)


Author(s):  
Deepashini Harithasan ◽  
Baharudin Omar ◽  
Aatit Paungmali

PURPOSE: Carrying weight in one hand is a common functional activity. This study investigated the effects of incremental loads carried in one hand unilaterally and its influence on the foot mechanics [plantar pressure, maximum force and contact area]. METHOD: Twenty healthy individuals were tested, in standing and walking, while carrying different weights (no load, 5 kg, 7.5 kg and 10 kg) using their right hand. ANCOVA was conducted separately for the right and left leg to address the effect of incremental loads on the foot mechanics within each leg with navicular drop index and Q angle as covariates. Paired t-test was conducted to address the effect of different loads on the foot mechanics between the legs. RESULTS: Results showed a significant increase in plantar pressure (pCONCLUSION: The fundamental changes in foot mechanics under the influence of different loads may be used to interpret the changes seen in the foot mechanics among different pathological condition.


PeerJ ◽  
2019 ◽  
Vol 7 ◽  
pp. e8186
Author(s):  
Yang Song ◽  
Meizi Wang ◽  
Julien Steven Baker ◽  
Yaodong Gu

Background Although the postural instability accompanying bilateral vestibular loss in human and quadrupeds during lateral head movements are well-known, it is still unclear whether or not lateral head turns would indeed activate the postural control system to maintain balance. This study aimed to examine the kinetic parameters in freely standing intact cats during head movements in order to further answer the above question. Methods Six intact cats were trained to stand, unrestrained on a force plate and perform voluntary head movements to the left and right positions in response to visual cues. Each trial was divided into two phases, quiet standing with the cat’s head maintaining a straight forward and lateral head position after voluntary head movements. Kinetic parameters including peak pressure and contact area under each limb as well as center of pressure (COP) displacements of the whole body were measured. Results Compared to the neutral head position, peak pressure and contact area of the left head position were significantly smaller for the left forelimb while greatly larger for the right forelimb. An exact opposite case of peak pressure and contact area in the forelimbs was found between the right and neutral head positions. In addition, the COP displacements altered oppositely to the head movements, and presented a significantly right shift in the left position and a significantly left shift in the right position. Conclusion These results demonstrate that the lateral displacement of the head in standing intact cats does activate the postural adjustment to maintain balance, which is consistent with the concept that vestibular input can contribute to postural balance during voluntary head turns.


2022 ◽  
Vol 12 (1) ◽  
pp. 506
Author(s):  
Marta Izquierdo-Renau ◽  
Roberto Sanchis-Sanchis ◽  
Jose I. Priego-Quesada ◽  
Alberto Encarnación-Martínez ◽  
Ana Queralt ◽  
...  

The use of minimalist shoes (MS) in running involves changes in running mechanics compared to conventional shoes (CS), but there is still little research analysing the effects of this footwear on plantar pressure, which could help to understand some risk injury factors. Moreover, there are no studies examining the effects of a prolonged running and foot strike patterns on baropodometric variables in MS. Therefore, the aim of this study was to analyse the changes produced using MS on plantar pressure during a prolonged running, as well as its interaction with the time and foot strike pattern. Twenty-one experienced minimalist runners (age 38 ± 10 years, MS running experience 2 ± 1 years) ran with MS and CS for 30 min at 80% of their maximal aerobic speed, and mean pressure, peak pressure, contact time, centre of pressure velocity, relative force and contact area were analysed using a pressure platform. Foot strike pattern and time were also considered as factors. The multivariable linear regression mixed models showed that the use of MS induced, at the end of a prolonged running, higher peak pressure (p = 0.008), lower contact time (p = 0.004) and lower contact area (p < 0.001) than using CS. Also, runners with forefoot strike pattern using MS, compared to midfoot and rearfoot patterns, showed higher mean and peak pressure (p < 0.001) and lower contact time and area (p < 0.05). These results should be considered when planning training for runners using MS, as higher peak pressure values when using this type of footwear could be a risk factor for the development of some foot injuries.


2021 ◽  
Author(s):  
Carlos Eduardo Gonçalves Barsotti ◽  
Gustavo Alves Tostes ◽  
Rodrigo Mantelatto Andrande ◽  
Ariane Verttú Schmidt ◽  
Alexandre Penna Torini ◽  
...  

Abstract Purpose: To verify the effect of cavus and planus feet on plantar pressure during static posture in adolescents with idiopathic scoliosis (AIS). Methods: Cross-sectional study. Sixty adolescents with idiopathic scoliosis (AIS) were evaluated and divided into three groups: normal foot (n=20), cavus foot (n=20), and planus foot (n=20). The scoliosis was confirmed by a spine X-ray exam (Cobb angle). The plantar arch index (AI) was calculated from the ratio between the midfoot area and the total area of the foot. Distribution plantar pressure data was collected using a plantar pressure system. The contact area, maximum force, and peak pressure were acquired over areas: forefoot, midfoot, and lateral and medial rearfoot. Results: The Cobb angle of the AIS of the major curves averaged 33.7°±10.7°, the mean TK was 32.6°±6.7°, and the mean LL was 31.4°±8.3°. AIS with cavus feet showed a reduction in contact area and peak pressure on the midfoot and lateral rearfoot when compared to planus and normal feet, as well as maximum force on the midfoot and rearfoot (medial and lateral). Planus feet showed increased peak pressure and maximum force on the midfoot when compared to cavus and normal feet. Another observation was that planus feet also promoted an increase in peak pressure and maximum force on rearfoot in relation to cavus feet. Conclusions: Foot posture influences plantar pressure of patients with AIS. Cavus feet decrease the plantar load on the midfoot and rearfoot while planus feet increased plantar pressure in these regions. Level of evidence: III


2020 ◽  
Vol 2020 ◽  
pp. 1-7
Author(s):  
Zhiwang Zhang ◽  
Lingyan Huang ◽  
Yu Liu ◽  
Lin Wang

Tai Chi is an available method for the treatment of knee osteoarthritis (KOA). The impacts of Tai Chi on plantar loads of individuals with KOA are not fully understood. 46 participants with knee osteoarthritis were randomly assigned into the Tai Chi group (n=23) or the control group (n=23). The Tai Chi group attended a 6-month Tai Chi program, and the control group participated in a wellness education program. Novel Pedar-X system was used to collect the peak pressure (PP) and maximum force (MF) during walking before and 6 months after the intervention. Significant higher peak pressure and maximum force were observed in the 4th and 5th metatarsophalangeal joints in the Tai Chi group. However, there were significant declines in the peak pressure of the whole foot and the 2nd and 3rd metatarsophalangeal joints and maximum force of the heel in the control group. These results suggested that individuals with KOA might change the pattern of plantar loads during walking through Tai Chi, and plantar loads would be useful as a parameter to assess the effect of Tai Chi on knee osteoarthritis. This trial is registered with Clinical Trials: CHiCTR-TRC-13003264.


2020 ◽  
Vol 5 (4) ◽  
pp. 2473011420S0025
Author(s):  
Zhao Hong-Mou

Category: Ankle; Basic Sciences/Biologics Introduction/Purpose: To study the effect of different degrees of distal tibial varus and valgus deformities on the tibiotalar joint contact, and to understand the role of fibular osteotomy. Methods: Eight cadaveric lower legs were used for biomechanical study. Nine conditions were included: normal ankle joint (group A), 10° varus (group B), 5° varus (group C), 5° valgus (group D), 10° valgus (group E) with fibular preserved, and 10° varus (group F), 5° varus (group G), 5° valgus (group H), and 10° valgus (group I) after fibular osteotomy. The joint contact area, contact pressure, and peak pressure were tested; and the translation of contact force center was observed. Results: The joint contact area, contact pressure, and peak pressure had no significant difference between group A and groups B to E (P>0.05). After fibular osteotomy, the contact area decreased significantly in groups F and I when compared with group A (P<0.05); the contact pressure increased significantly in groups F, H, and I when compared with group A (P<0.05); the peak pressure increased significantly in groups F and I when compared with group A (P<0.05). There were two main anterior-lateral and anterior-medial contact centers in normal tibiotalar joint, respectively; and the force center was in anterior-lateral part, just near the center of tibiotalar joint. While the fibula was preserved, the force center transferred laterally with increased varus angles; and the force center transferred medially with increased valgus angles. However, the force center transferred oppositely to the medial part with increased varus angles, and laterally with increased valgus angles after fibular osteotomy. Conclusion: Fibular osteotomy facilitates the tibiotalar contact pressure translation, and is helpful for ankle joint realignment in suitable cases.


Sensors ◽  
2021 ◽  
Vol 21 (9) ◽  
pp. 3277
Author(s):  
Juan Luis Florenciano Restoy ◽  
Jordi Solé-Casals ◽  
Xantal Borràs-Boix

The objectives of this study were to determine the amplitude of movement differences and asymmetries between feet during the stance phase and to evaluate the effects of foot orthoses (FOs) on foot kinematics in the stance phase during running. In total, 40 males were recruited (age: 43.0 ± 13.8 years, weight: 72.0 ± 5.5 kg, height: 175.5 ± 7.0 cm). Participants ran on a running treadmill at 2.5 m/s using their own footwear, with and without the FOs. Two inertial sensors fixed on the instep of each of the participant’s footwear were used. Amplitude of movement along each axis, contact time and number of steps were considered in the analysis. The results indicate that the movement in the sagittal plane is symmetric, but that it is not in the frontal and transverse planes. The right foot displayed more degrees of movement amplitude than the left foot although these differences are only significant in the abduction case. When FOs are used, a decrease in amplitude of movement in the three axes is observed, except for the dorsi-plantar flexion in the left foot and both feet combined. The contact time and the total step time show a significant increase when FOs are used, but the number of steps is not altered, suggesting that FOs do not interfere in running technique. The reduction in the amplitude of movement would indicate that FOs could be used as a preventive tool. The FOs do not influence the asymmetry of the amplitude of movement observed between feet, and this risk factor is maintained. IMU devices are useful tools to detect risk factors related to running injuries. With its use, even more personalized FOs could be manufactured.


Sign in / Sign up

Export Citation Format

Share Document