scholarly journals A Potrace-based Tracing Algorithm for Prescribing Two-dimensional Trajectories in Inertial Sensors Simulation Software

Author(s):  
Bohdan R. Tsizh ◽  
◽  
Tetyana A. Marusenkova
2010 ◽  
Vol 133 (1) ◽  
Author(s):  
Ioannis Templalexis ◽  
Pericles Pilidis ◽  
Vassilios Pachidis ◽  
Petros Kotsiopoulos

Two-dimensional (2D) compressor flow simulation software has always been a very valuable tool in compressor preliminary design studies, as well as in compressor performance assessment operating under uniform and non-uniform inlet conditions. This type of software can also be used as a supplementary teaching tool. In this context, a new streamline curvature (SLC) software has been developed capable of analyzing the flow inside a compressor in two dimensions. The software was developed to provide great flexibility, in the sense that it can be used as: (a) a performance prediction tool for compressors of a known design, (b) a development tool to assess the changes in performance of a known compressor after implementing small geometrical changes, (c) a design tool to verify and refine the outcome of a preliminary compressor design analysis, and (d) a teaching tool to provide the student with an insight of the 2D flow field inside a compressor and how this could be effectively predicted using the SLC method combined with various algorithms and cascade models. Apart from describing in detail the design, structure, and execution of the SLC software, this paper also stresses the importance of developing robust, well thought-out software and highlights the main areas a potential programmer should focus on in order to achieve this. This text also highlights the programming features incorporated into the development of the software in order to make it amenable for teaching purposes. The paper reviews in detail the set of cascade models incorporated for subsonic and supersonic flow, for design and off-design operating conditions. Moreover, the methods used for the prediction of surge and choke are discussed in detail. The code has been validated against experimental results, which are presented in this paper together with the strong and weak points of this first version of the software and the potential for future development. Finally, an indicative case study is presented in which the shift of streamlines and radial velocity profiles is demonstrated under the influence of two sets of compressor inlet boundary conditions.


2021 ◽  
Vol 81 (12) ◽  
Author(s):  
Yu-Lan Fan ◽  
Xiao-Dong Shi ◽  
Xiao-Rong Zhou ◽  
Liang Sun

AbstractWe report a sensitive study of measuring $$b\rightarrow s\gamma $$ b → s γ photon polarisation in $$D^{0}\rightarrow K_1(1270)^-e^+\nu _e$$ D 0 → K 1 ( 1270 ) - e + ν e with an integrated luminosity of $$\mathscr {L}$$ L = 1 ab$$^{-1}$$ - 1 at a center-of-mass energy of 3.773 GeV at a future Super Tau Charm Facility. More than 61,000 signals of $$D^{0}\rightarrow K_1(1270)^-e^+\nu _e$$ D 0 → K 1 ( 1270 ) - e + ν e are expected. Based on a fast simulation software package, the statistical sensitivity for the ratio of up-down asymmetry is estimated to be $$1.5\times 10^{-2}$$ 1.5 × 10 - 2 by performing a two-dimensional angular analysis in $$D^{0}\rightarrow K_1(1270)^-e^+\nu _e$$ D 0 → K 1 ( 1270 ) - e + ν e . Combining with measurements of up-down asymmetry in $$B\rightarrow K_1\gamma $$ B → K 1 γ , the photon polarisation in $$b\rightarrow s\gamma $$ b → s γ can be determined model-independently.


Author(s):  
Kiflom B. Tesfamariam ◽  
Cheng-Xian (Charlie) Lin ◽  
Fang Liu

Abstract This paper presents the results of two-dimensional (2D) numerical simulation of heat, air, and moisture transfer through porous walls, which have important application background in the built environment and other engineering fields. The air flows, heat and moisture transfer in the walls are studied using a transient heat, air, and moisture (HAM) model. This model treats the non-isothermal airflow through two-dimensional porous geometries in a time-dependent format. The model includes the Brinkman equation describes the flow of air and other mathematical equations that calculate the heat and moisture transfer through the porous region. The equations are solved by a finite element method (FEM) using physics-based modeling, which is implemented in the commercial simulation software, COMSOL Multiphysics. The model prediction is first validated by using published benchmark solutions. Eventually, the numerical results are presented to illustrate the complex effects of material porosity and permeability on the heat and moisture transport, and moisture content variation in space and time through the walls, at different humidity and temperature conditions. Within the investigated parameter ranges, it is demonstrated that the relative humidity and temperature difference are the driving forces for the transient heat, air, and moisture transport processes through the porous area in the porous walls.


2006 ◽  
Vol 18 (05) ◽  
pp. 237-245
Author(s):  
WEI-MIN JENG ◽  
HSUAN-HUI WANG

The quality of traditional two-dimensional image reconstruction for PET has been efficiently improved by three-dimensional image reconstruction, but the sensitivity of the data and the quality of the image are restricted by the limit of modality physics. In analytical image reconstruction algorithm, 3DRP method compensates the unmeasured events by forward projection based on the initial direct image estimate. However, the original 3DRP method merely depends on the parallel projections without taking into account the oblique projections. In our proposed 3DRP-SSRB method, we improve the first image estimate by incorporating the rebinned oblique data. SSRB method was used to perform the rebinning operation to make uses of the oblique projection data to improve the sensitivity information. And then project the improved image estimate forward and reconstruct the final image. Conflicting parameters of reconstructed image quality of 3DRP are experimented by simulated three-dimensional phantom study with regard to both system sensitivity and image quality factors. PET simulation software package was used to conduct the experiment along with the MATLAB software to evaluate the effectiveness of two-dimensional FBP, 3DRP, and our proposed 3DRP-SSRB methods. The result demonstrated its better image quality by having better mean squared error numbers in most of output image slices.


2021 ◽  
Vol 2021 ◽  
pp. 1-12
Author(s):  
Lei Shi ◽  
Fang Feng ◽  
Wenfeng Guo ◽  
Yan Li

In order to study the icing mechanism and anti-icing technology, a small low-speed reflux icing wind tunnel test system was designed and constructed. The refrigeration system and spray system were added to the small reflux low-speed wind tunnel to achieve icing meteorological conditions. In order to verify the feasibility of the test system, the flow field uniformity, temperature stability, and liquid water content distribution of the test section were tested and calibrated. On this basis, the icing tests of an aluminium cylinder, an NACA0018 airfoil, and an S809 airfoil were carried out, and the two-dimensional ice shape obtained by the test was compared with the two-dimensional ice shape obtained by the numerical simulation software. The results show that in the icing conditions and icing time studied, the parameters of the test system are stable, and the experimental ice shape is consistent with the simulated ice shape, which can meet the needs of icing research.


2022 ◽  
Vol 9 (1) ◽  
pp. 110-116
Author(s):  
Galon et al. ◽  

Escherichia coli and Candida auris are not easy to identify in laboratories without special technology. In this study, we have presented microfluidic designs for trapping bacteria and fungi. Two trapping chambers are designed using AutoCAD and the fluid dynamics of the bacteria and fungi are simulated using D. Schroeder’s Fluid Dynamics Simulation software. The designs are modified versions of a device that is constructed and simulated with numerical predictions, which include sizes and apertures in consideration of the specified microbe. The current designs take into account the exact dimensions of E. coli and C. auris under fluid flow and passive microfluidic technique, where actuation is based on geometry, is considered. The measurements of the design ensure that the species are to be trapped due to diffusion and ¬¬fluid dynamics. From the simulation, the stagnation is to be shown with its default setting, and approximation is done in its motion which is simulated in the two-dimensional space of the bacteria and fungi. The microfluidic designs will be useful during experiments in deciphering necessary information of the bacteria and fungi and will be a platform in modeling numerous biomedical assays and in the optimization of biophysical tools.


Science ◽  
2019 ◽  
Vol 366 (6472) ◽  
pp. 1480-1485 ◽  
Author(s):  
Yauhen P. Sachkou ◽  
Christopher G. Baker ◽  
Glen I. Harris ◽  
Oliver R. Stockdale ◽  
Stefan Forstner ◽  
...  

Quantized vortices are fundamental to the two-dimensional dynamics of superfluids, from quantum turbulence to phase transitions. However, surface effects have prevented direct observations of coherent two-dimensional vortex dynamics in strongly interacting systems. Here, we overcome this challenge by confining a thin film of superfluid helium at microscale on the atomically smooth surface of a silicon chip. An on-chip optical microcavity allows laser initiation of clusters of quasi–two-dimensional vortices and nondestructive observation of their decay in a single shot. Coherent dynamics dominate, with thermal vortex diffusion suppressed by five orders of magnitude. This establishes an on-chip platform with which to study emergent phenomena in strongly interacting superfluids and to develop quantum technologies such as precision inertial sensors.


This elaboration offers a dynamic model of an Active Magnetic Bearing (AMB) simulated in ANSYS Maxwell 17.1. This work reports simulation for two distinctive structure of AMBs that utilizations single electromagnets and double attraction type electromagnets put in 180 degrees separated from each other. At first, the theoretical model of single coil AMB and double coils AMB has been presented. It also deals with a simulation study of active magnetic bearings utilizing Finite Element Method (FEM) in two-dimensional (2-D) and three-dimensional (3-D) platform. 2-D and 3-D simulation have been compared for single and double coils AMB system. Magnetic properties such as- force, magnetic, flux pattern and flux density are performed and observed utilizing ANSYS Maxwell simulation software. This paper also includes a comparative study of an AMBs system with the variation in the gap between the actuator and the rotor and the effect of variation in inductance, flux, magnetic field and force are detected which is obligatory for hardware execution of an AMB system


2019 ◽  
Vol 256 ◽  
pp. 02006
Author(s):  
Jie Zhang ◽  
Tieshan Zhang

The two-dimensional finite element model of multi-disc clutch friction pair was established by Abaqus simulation software, and the contact pressure of the friction surface under different piston constraints was calculated and analyzed. Considering contact pressure as the main heat-generating factor, the two-dimensional heat conduction process was numerically discretized by the implicit difference method. Then the temperature model of the multi-disc clutch friction pair was programmed in Matlab. The bench test verified the correctness of the temperature model. It is found that the temperature field between components is different and shows uneven distribution under the actual constraint. The local temperature of the component near the concentrated load is the highest, in which the radial temperature difference is the largest. The arrangement in which the piston pressure is concentrated in middle diameter produces the lowest temperature and the smallest radial temperature difference, which can effectively avoid thermal deformation of the component due to uneven temperature distribution.


Sign in / Sign up

Export Citation Format

Share Document