scholarly journals Comparative research of photosynthetic processes in selected poikilohydric organisms from Mediterranean and Central-European alpine habitats

2018 ◽  
Vol 8 (2) ◽  
pp. 286-298
Author(s):  
Gabriella Nora Maria Giudici ◽  
Josef Hájek ◽  
Miloš Barták ◽  
Svatava Kubešová

Dehydration-induced decrease in photosynthetic activity was investigated in five poikilohydric autotrophs using chlorophyll fluorescence parameters recorded during controlled desiccation. For the study, two representatives of mosses from alpine zone (Rhizomnium punctatum, Rhytidiadelphus squarrosus) of the Jeseníky Mts. (Czech Republic) were used. Other two experimental species were mediterranean habitats liverwort (Pellia endiviifolia) and moss (Palustriella commutata), collected from under Woodwardia radicans canopy in the Nature Reserve Valle delle Ferriere (Italy). The last species was a liverwort (Marchantia polymorpha) collected from lowland site (Brno, Moravia, Czech Republic). We investigated the relationship between relative water content (RWC) and several chlorophyll fluorescence parameters evaluating primary photochemical processes of photosynthesis, such as effective quantum yield of photosynthetic processes in photosystem II (ΦPSII), and non-photochemical quenching (qN). With desiccation from fully wet (RWC = 100%) to dry state (RWC = 0%), ΦPSII exhibited a rapid (R. punctatum) and slow decline of ΦPSII (R. squarrosus, P. endiviifolia, M. polymorpha, and P. commutata). Shapes of dehydration-response curves were species-specific. RWC0.5, i.e. the RWC at which the sample showed half of maximum ΦPSII, reflected the species-specificity. It reached 65% in desiccation sensitive (R. punctatum), 53% and 43% in semi-tolerant (P. commutata and R. squarrosus), 24% and 18% in desiccation-tolerant species (P. endiviifolia and M. polymorpha). In all experimental species, non-photochemical quenching (qN) of absorbed light energy showed high values at RWC = 100% and a slight increase with desiccation. Steady state chlorophyll fluorescence (FS) remained high during desiccation and was not correlated with ΦPSII.  

Author(s):  
Hamid Mohammadi ◽  
Mohsen Janmohammadi ◽  
Naser Sabaghnia

<p>Drought stress negatively affects plant photosynthesis and disturbs the electron transport activity. Evaluation of the chlorophyll fluorescence parameters might reflect influence of the environmental stress on plants and can be applied as an indicator of the primary photochemistry of photosynthesis. In current study the effect of foliar application of benzylaminopurine (BAP, a synthetic cytokinin) and abscisic acid (ABA) on chlorophyll fluorescence parameters of relatively drought tolerant (Pishtaz) and susceptible (Karaj3) bread wheat genotypes under well watered and terminal water deficit condition have been evaluated. Terminal drought was induced by withholding water at anthesis stage (Zadoks scale 65). Results showed that coefficient of non-photochemical quenching of variable fluorescence (qN), quantum yield of PS II photochemistry (ΦPSII) and photochemical quenching (qP) were affected by hormone spray treatments. So that evaluation of parameters at 7 day after foliar treatments revealed that ABA significantly increased electron transport rate (ETR) and qN while considerably decreased ΦPSII, gs and maximum quantum yield of photosystem II (Fv/Fm). However exogenous application of cytokinin could increase gs, Fv/Fm and ΦPSII and the highest value of these parameters was recorded in <em>cytokinin </em>treated plants of Pishtaze cv. under well watered condition. Nevertheless, evaluation of the parameters in different periods after spraying showed that with approaching the maturity stage some traits like as gs, Fv/Fm and ETR significantly decreased in both genotypes. Evaluation of gs and Chlorophyll fluorescence parameters of genotypes between different irrigation levels showed that although cv. Pishtaz showed higher performance of PSII under well watered condition, it failed to maintain its superiority under stress condition. This finding suggests that some more responsive parameter like gs, Fv/Fm and ΦPSII can be considered as reliable indicator for understanding the biochemical and physiological effects of exogenous application of phytohormones under terminal drought stress.</p>


Horticulturae ◽  
2021 ◽  
Vol 7 (8) ◽  
pp. 238
Author(s):  
Yu Kyeong Shin ◽  
Shiva Ram Bhandari ◽  
Jung Su Jo ◽  
Jae Woo Song ◽  
Jun Gu Lee

This study monitored changes in chlorophyll fluorescence (CF), growth parameters, soil moisture content, phytochemical content (proline, ascorbic acid, chlorophyll, total phenol content (TPC), and total flavonoid content (TFC)), and antioxidant activities in 12-day-old lettuce (Lactuca sativa L.) seedlings grown under drought stress (no irrigation) and control (well irrigated) treatments in controlled conditions for eight days. Measurements occurred at two-day intervals. Among ten CF parameters studied, effective quantum yield of photochemical energy conversion in PSII (Y(PSII)), coefficient of photochemical quenching (qP), and coefficient of photochemical quenching of variable fluorescence based on the lake model of PSII (qL) significantly decreased in drought-stressed seedlings from day 6 of treatment compared to control. In contrast, maximum quantum yield (Fv/Fm), ratio of fluorescence (Rfd), and quantum yield of non-regulated energy dissipation in PSII (Y(NO)) were significantly affected only at the end. All growth parameters decreased in drought-stressed seedlings compared to control. Proline started increasing from day 4 and showed ~660-fold elevation on day 8 compared to control. Chlorophyll, ascorbic acid, TPC, TFC, and antioxidant activities decreased in drought-stressed seedlings. Results showed major changes in all parameters in seedlings under prolonged drought stress. These findings clarify effects of drought stress in lettuce seedlings during progressive drought exposure and will be useful in the seedling industry.


2001 ◽  
Vol 28 (11) ◽  
pp. 1133 ◽  
Author(s):  
Dugald C. Close ◽  
Chris L. Beadle ◽  
Mark J. Hovenden

The effects of cold-induced photoinhibition on chlorophyll and carotenoid dynamics and xanthophyll cycling in Eucalyptus nitens (Deane and Maiden) Maiden were assessed between planting and 32 weeks after planting. The seedlings were fertilised or nutrient-deprived (non-fertilised) before planting and shaded or not shaded after planting. The experimental site was 700 m a.s.l., which is considered marginal for establishment of E. nitens plantations in Tasmania due to low mean annual minimum temperatures. Low temperature–high light conditions caused a reduction in variable to maximal chlorophyll fluorescence ratio (F v /F m ), which was more pronounced in non-fertilised than in fertilised seedlings. Shadecloth shelters alleviated this depression. Except in shaded fertilised seedlings, F v /F m did not recover to the level before planting until after 20 weeks. Total chlorophyll content was initially reduced in shaded treatments but subsequently increased with increasing temperatures and F v /F m. Total xanthophyll content and xanthophylls per unit chlorophyll remained relatively constant in fertilised seedlings but decreased in non-fertilised seedlings within 2 weeks after planting. Total xanthophyll and xanthophylls per unit chlorophyll subsequently recovered in non-shaded, non-fertilised seedlings with increasing temperatures and F v /F m. Diurnal [yield and non-photochemical quenching (NPQ) and seasonal (F v /F m) variation in chlorophyll fluorescence parameters were not reflected in xanthophyll cycling during the period of most severe photoinhibition. This result may indicate that chlorophyll–xanthophylls protein complexes form in winter-acclimated E. nitens foliage as have been demonstrated to occur in Eucalyptus pauciflora Sieb. ex Spreng. (Gilmore and Ball 2000, Proceedings of the National Academy of Sciences USA 97, 11098–11101).


2017 ◽  
Vol 9 (12) ◽  
pp. 268 ◽  
Author(s):  
Diogo S. Moura ◽  
Giovani G. Brito ◽  
Ângela D. Campos ◽  
Ítalo L. Moraes ◽  
Paulo R. R. Fagundes ◽  
...  

Phenylalanine ammonia-lyase (PAL) which is considered to be one of the main lines of cell acclimation against stress in plants, non-structural carbohydrates (NSC) accumulation and chlorophyll fluorescence parameters were quantified in two rice genotypes as a function of two temperature regimes: 22/30 °C (control) and 28/30 °C night/day (high night temperatures - HNT), imposed from heading to milk stage. The rice cultivars chosen were Nagina22 (N22) and BRS Querência (BRS-Quer), which are genotypes tolerant and sensitive to high temperatures, respectively. BRS-Quer genotype highlighted more sensitive responses maintaining higher PAL and peroxidase levels on seventh and twenty-first days after stress imposing. On the other hand, this genotype showed levels of fructose, glucose and sucrose decreasingly across stress period whether compared to N22. Both genotypes showed similarity for most of the chlorophyll fluorescence parameters. However, the photosynthesis induction curve highlighted that HNT caused decreases in some photochemical quenching of fluorescence as well as increases of non-phochemical quenching, affecting more prominently BRS-Quer genotype. N22 maintained unaltered the spikelet sterility and 1000-grain weight across temperature regimes showing a consistent trend with its stem NSC accumulation during stress period. The higher availability of soluble sugars shown by N22 at the end of stress period could be unloaded in spikelet formation and grain fillings contributing in their lower sterility rate and greater 1000-grain weight stability across the environments. These results indicate that selecting genotypes with higher capacity to stem NSC translocation beyond accumulation at HNT could lead to more grain yield stability in future climate scenarios.


Agronomy ◽  
2020 ◽  
Vol 10 (11) ◽  
pp. 1627
Author(s):  
Yu Kyeong Shin ◽  
Shiva Ram Bhandari ◽  
Jung Su Jo ◽  
Jae Woo Song ◽  
Myeong Cheoul Cho ◽  
...  

Chlorophyll fluorescence (CF), growth parameters, phytochemical contents [proline, chlorophyll, ascorbic acid, total phenol content (TPC), total flavonoid content (TFC)], and antioxidant activities were investigated in lettuce (Lactuca sativa L.) seedlings grown under different sodium chloride (NaCl) concentrations (0, 50, 100, 200, 300, and 400 mM) in a controlled environment for eight days. The parameters were evaluated at two days intervals. Almost of the CF and growth parameters as well as phytochemicals were significantly affected by both NaCl concentrations and progressive treatment schedule. The maximum quantum yield (Fv/Fm), effective quantum yield of photochemical energy conversion in PSII [Y(PSII)], coefficient of photochemical quenching (qP), coefficient of non-photochemical quenching (qN), and ratio of fluorescence decline (Rfd) showed decrements only at the highest saline concentration (400 mM), whereas the quantum yield of non-regulated energy dissipation in PSII [Y(NO)] exhibited a dissipation trend. All the growth parameters decreased with increasing NaCl concentrations, showing the highest decrease (~8 fold) in shoot fresh weight, compared to control seedlings. Proline significantly increased with increasing NaCl concentration and treatment time. Other phytochemicals decreased with the increase in NaCl concentration and reached their lowest at 400 mM. Overall, the results showed major changes in all parameters when the seedlings were grown at a NaCl concentration of 400 mM. The present findings will be useful for understanding the differential effect of NaCl concentrations in lettuce seedlings, and also might be useful to optimize the NaCl concentrations in other crops grown in controlled environmental conditions.


2006 ◽  
Vol 33 (3) ◽  
pp. 241 ◽  
Author(s):  
Jen-Hsien Weng ◽  
Yaw-Nan Chen ◽  
Tien-Szu Liao

Chlorophyll fluorescence parameters and spectral reflectance at leaf level were measured at both predawn and noon, under different temperatures and natural light conditions from autumn to winter. Predawn Fv / Fm of both mango (Mangifera indica L.), a tropical fruit tree, and Podocarpus nagi Zoll. et Moritz., a subtropical conifer, decreased with decreasing temperature, with the former to a greater extent than the latter. Yet, predawn Fv / Fm of Taiwan alder (Alnus formosana Makino), a broadleaf tree widely distributed from the lowlands to 3000 m above sea level in Taiwan, was less influenced by temperature. Nevertheless, taking all three species into consideration, predawn Fv / Fm showed a strong correlation with predawn photochemical reflectance index [(PRIp), PRI = (R531 − R570) / (R531 + R570), where R = reflectance]. For the data obtained at noon, ΔF / Fm′ showed a significant but weak correlation with PRI (PRIn). However, stronger correlation between ΔF / Fm′ and ΔPRI (PRIp − PRIn) was found. In addition, while a non-significant or weak correlation between non-photochemical quenching (NPQ) and PRIn was observed in species sensitive to low temperature, their NPQ was significantly correlated with ΔPRI. We conclude that PRIp can serve as an indicator of the seasonal variation of potential PSII efficiency; and ΔPRI reflects the actual photodissipation as well as actual PSII efficiency during illumination. For the three species in this study, the PRI provides a more consistent measure of the variation in predawn fluorescence values than for steady-state values measured under normal seasonally varying daylight illumination.


Author(s):  
Chen Xu ◽  
Qian Li ◽  
Xiaolong Liu ◽  
Hongjun Wang ◽  
Fenglou Ling

The change of photosynthesis and chlorophyll fluorescence parameters of rice were studied in five nitrogen levels during tillering, booting, and heading periods under salt stress. The net photosynthetic rate (PN), stomatal conductance (gs), transpiration rate (E), apparent mesophyll conductance (AMC), effective quantum yield of PSII photochemistry (ΦPSII), electron transport rate (ETR), and photochemical quenching coefficient (qP) were significantly declined under salt stress and exhibited a lower magnitude of decline in the 2N, 1N, and 1/2N treatments respectively during tillering, booting, and heading periods. The stomatal limit value (Ls), Nonphotochemical quenching (NPQ) and plasma membrane permeability were significantly increased and exhibited a lower magnitude of increase in the 2N, 1N, and 1/2N treatments respectively during tillering, booting, and heading periods. The amount of nitrogen in the nutrient solution should be reduced 50% after the heading period to decrease salt damage to rice under salt stress.


2011 ◽  
Vol 356-360 ◽  
pp. 2785-2790 ◽  
Author(s):  
Liu Qing Yang ◽  
Fei Yong Liao ◽  
Kun Zhao

Solidago canadensis L. was treated with metsulfuron-methyl, fluroxypyr and iso-propyl glyphosate. The photosynthetic rate and chlorophyll fluorescence parameters were measured. The results showed that after treated 13 days later, the intrinsic conversion efficiency of light energy decreased, treatment A1B3 had the largest decline, which was 81.6 % of the control, the changes of treatments treated with iso-propyl glyphosate were not obvious; the photochemical quenching parameter of all treatments decreased, treatment A2B2 had the largest decline, which was 42.6 % of control; the photosynthetic electron transport rate decreased obviously, treatment A1B2,A1B3 and A2B2 had the largest decline, which was 20.0 % of control; the net photosynthetic rate decreased greatly, treatment A2B2 and A2B3 drooped more than others, which were 11.3% and 17.8% of control respectively. After treated 50 days later, the plants treated with metsulfuron-methyl and fluroxypyr were dead, whose net photosynthetic rates were zero. The net photosynthetic rates of the plants treated with iso-propyl glyphosate decreased to varying degrees, but plants were alive. Result shows that metsulfuron-methyl and fluroxypyr could be used to kill the Solidago canadensis L., the plants would be dead after treated 50 days later.


Sign in / Sign up

Export Citation Format

Share Document