Foundational drugs for HFrEF: the growing evidence for a rapid sequencing strategy

Keyword(s):  
2009 ◽  
Vol 37 (7) ◽  
pp. 2264-2273 ◽  
Author(s):  
María Méndez-Lago ◽  
Jadwiga Wild ◽  
Siobhan L. Whitehead ◽  
Alan Tracey ◽  
Beatriz de Pablos ◽  
...  

2017 ◽  
Vol 19 (1) ◽  
pp. 99-106 ◽  
Author(s):  
Cristina Jiménez ◽  
María Jara-Acevedo ◽  
Luis A. Corchete ◽  
David Castillo ◽  
Gonzalo R. Ordóñez ◽  
...  

2019 ◽  
Author(s):  
Michael Hagemann-Jensen ◽  
Christoph Ziegenhain ◽  
Ping Chen ◽  
Daniel Ramsköld ◽  
Gert-Jan Hendriks ◽  
...  

AbstractLarge-scale sequencing of RNAs from individual cells can reveal patterns of gene, isoform and allelic expression across cell types and states1. However, current single-cell RNA-sequencing (scRNA-seq) methods have limited ability to count RNAs at allele- and isoform resolution, and long-read sequencing techniques lack the depth required for large-scale applications across cells2,3. Here, we introduce Smart-seq3 that combines full-length transcriptome coverage with a 5’ unique molecular identifier (UMI) RNA counting strategy that enabled in silico reconstruction of thousands of RNA molecules per cell. Importantly, a large portion of counted and reconstructed RNA molecules could be directly assigned to specific isoforms and allelic origin, and we identified significant transcript isoform regulation in mouse strains and human cell types. Moreover, Smart-seq3 showed a dramatic increase in sensitivity and typically detected thousands more genes per cell than Smart-seq2. Altogether, we developed a short-read sequencing strategy for single-cell RNA counting at isoform and allele-resolution applicable to large-scale characterization of cell types and states across tissues and organisms.


2021 ◽  
Vol 12 ◽  
Author(s):  
Mingmei Wei ◽  
Xiu Li ◽  
Rui Yang ◽  
Liulong Li ◽  
Zhuangzhi Wang ◽  
...  

Wheat (Triticum aestivum L.), the most widely cultivated crop, is affected by waterlogging that limited the wheat production. Given the incompleteness of its genome annotation, PacBio SMRT plus Illumina short-read sequencing strategy provided an efficient approach to investigate the genetic regulation of waterlogging stress in wheat. A total of 947,505 full-length non-chimetric (FLNC) sequences were obtained with two wheat cultivars (XM55 and YM158) with PacBio sequencing. Of these, 5,309 long-non-coding RNAs, 1,574 fusion genes and 739 transcription factors were identified with the FLNC sequences. These full-length transcripts were derived from 49,368 genes, including 47.28% of the genes annotated in IWGSC RefSeq v1.0 and 40.86% genes encoded two or more isoforms, while 27.31% genes in the genome annotation of IWGSC RefSeq v1.0 were multiple-exon genes encoding two or more isoforms. Meanwhile, the individuals with waterlogging treatments (WL) and control group (CK) were selected for Illumina sequencing. Totally, 6,829 differentially expressed genes (DEGs) were detected from four pairwise comparisons. Notably, 942 DEGs were overlapped in the two comparisons (i.e., XM55-WL vs. YM158-WL and YM158-WL vs. YM158-CK). Undoubtedly, the genes involved in photosynthesis were downregulated after waterlogging treatment in two cultivars. Notably, the genes related to steroid biosynthesis, steroid hormone biosynthesis, and downstream plant hormone signal transduction were significantly upregulated after the waterlogging treatment, and the YM158 variety revealed different genetic regulation patterns compared with XM55. The findings provided valuable insights into unveiling regulation mechanisms of waterlogging stress in wheat at anthesis and contributed to molecular selective breeding of new wheat cultivars in future.


2019 ◽  
Vol 70 (15) ◽  
pp. 3825-3833 ◽  
Author(s):  
Shengjun Li ◽  
Shangang Jia ◽  
Lili Hou ◽  
Hanh Nguyen ◽  
Shirley Sato ◽  
...  

Abstract Transgenic technology was developed to introduce transgenes into various organisms to validate gene function and add genetic variations >40 years ago. However, the identification of the transgene insertion position is still challenging in organisms with complex genomes. Here, we report a nanopore-based method to map the insertion position of a Ds transposable element originating in maize in the soybean genome. In this method, an oligo probe is used to capture the DNA fragments containing the Ds element from pooled DNA samples of transgenic soybean plants. The Ds element-enriched DNAs are then sequenced using the MinION-based platform of Nanopore. This method allowed us to rapidly map the Ds insertion positions in 51 transgenic soybean lines through a single sequencing run. This strategy is high throughput, convenient, reliable, and cost-efficient. The transgenic allele mapping protocol can be easily translated to other eukaryotes with complex genomes.


2010 ◽  
Vol 192 (21) ◽  
pp. 5806-5812 ◽  
Author(s):  
Daniel M. Linares ◽  
Jan Kok ◽  
Bert Poolman

ABSTRACT Lactococcus lactis NZ9000 and its parent MG1363 are the most commonly used lactic acid bacteria for expression and physiological studies. We noted unexpected but significant differences in the growth behaviors of both strains. We sequenced the entire genomes of the original NZ9000 and MG1363 strains using an ultradeep sequencing strategy. The analysis of the L. lactis NZ9000 genome yielded 79 differences, mostly point mutations, with the annotated genome sequence of L. lactis MG1363. Resequencing of the MG1363 strain revealed that 73 out of the 79 differences were due to errors in the published sequence. Comparative transcriptomic studies revealed several differences in the regulation of genes involved in sugar fermentation, which can be explained by two specific mutations in a region of the ptcC promoter with a key role in the regulation of cellobiose and glucose uptake.


Sign in / Sign up

Export Citation Format

Share Document