Understory plant diversity and its relationship with soil physicochemical properties in different plantations in Yunding Mountain

2021 ◽  
Vol 41 (3) ◽  
Author(s):  
李婷婷,唐永彬,周润惠,余飞燕,董洪君,王敏,郝建锋 LI Tingting
2017 ◽  
Vol 37 (24) ◽  
Author(s):  
吕刚 LÜ Gang ◽  
王婷 WANG Ting ◽  
李叶鑫 LI Yexin ◽  
魏忠平 WEI Zhongping ◽  
王凯 WANG Kai

PeerJ ◽  
2021 ◽  
Vol 9 ◽  
pp. e11852
Author(s):  
Qian Lyu ◽  
Yi Shen ◽  
Xianwei Li ◽  
Gang Chen ◽  
Dehui Li ◽  
...  

Background Soil and understory vegetation are vital components of forest ecosystems. Identifying the interaction of plantation management to vegetation and soil is crucial for developing sustainable plantation ecosystem management strategies. As one of the main measures of close-to-nature management of forest plantation, few studies have paid attention to the effect of crop tree management on the soil properties and understory vegetation. Methods A 36-year-old Pinus massoniana plantation in Huaying city, Sichuan Province was taken as the research object to analyse the changes in undergrowth plant diversity and soil physicochemical properties under three different crop tree densities (100, 150, and 200 N/ha). Results Our results showed that the contents of available phosphorus, organic matter and hydrolysable nitrogen in the topsoil increased significantly after crop tree management, while content of available potassium decreased. The composition of shrub and herb layer was richer, and the dominant species were obviously replaced after crop tree management. The Shannon–Wiener index and Richness index of shrub layer, and the diversity of herb layer increased significantly after crop tree management. Herb layer diversity indexes and Richness index of shrub layer were closely related to soil organic matter, available phosphorus, hydrolysable nitrogen, available potassium, soil moisture and bulk density. As the main limiting factors for plant growth, nitrogen, phosphorus and potassium were closely related to plant diversity and to the distribution of the dominant species. At the initial stage of crop tree management, each treatment significantly improved the soil physicochemical properties and plant diversity of Pinus massoniana plantation, and the comprehensive evaluation was 200 N/ha >100 N/ha >150 N/ha >CK. Compared with other treatments, 200 N/ha had the best effect on improving the undergrowth environment of the Pinus massoniana plantation in the initial stage of crop tree management.


2013 ◽  
Vol 726-731 ◽  
pp. 4029-4032
Author(s):  
Xue Hong Tan ◽  
Cui Ying Zhang ◽  
Fan Cheng Kong ◽  
Da Wei Huang

The plant diversity and soil physicochemical properties of five national roads in Xuzhou area were studied with the investigation methods of uniform distribution and typical sample and determination of soil properties in laboratory. The results show as follow:(1) There were 40 kinds of arbor,23 kinds of shrub, 40 kinds of herb in five national roads. P. lasiocarpa, Ligustrum lucidum, Juniperus chinensis cv. Kaizuka, Photinia serrulata and T. repens played important roles ,their important values were at the top.(2) The order of comprehensive Shannon-Wiener index was G206>G104>G311>G310>G205. Artificial trees and shrubs inhibited the growth of weeds to some extent. (3) Soil physicochemical properties were affected by human beings, large soil bulk density, high pH value, nutrient deficiency were a common feature of soil in five national roads.


Flora ◽  
2019 ◽  
Vol 256 ◽  
pp. 85-91 ◽  
Author(s):  
Gianluigi Ottaviani ◽  
Lars Götzenberger ◽  
Giovanni Bacaro ◽  
Alessandro Chiarucci ◽  
Francesco de Bello ◽  
...  

Materials ◽  
2021 ◽  
Vol 14 (10) ◽  
pp. 2617
Author(s):  
Alicja Szatanik-Kloc ◽  
Justyna Szerement ◽  
Agnieszka Adamczuk ◽  
Grzegorz Józefaciuk

Thousands of tons of zeolitic materials are used yearly as soil conditioners and components of slow-release fertilizers. A positive influence of application of zeolites on plant growth has been frequently observed. Because zeolites have extremely large cation exchange capacity, surface area, porosity and water holding capacity, a paradigm has aroused that increasing plant growth is caused by a long-lasting improvement of soil physicochemical properties by zeolites. In the first year of our field experiment performed on a poor soil with zeolite rates from 1 to 8 t/ha and N fertilization, an increase in spring wheat yield was observed. Any effect on soil cation exchange capacity (CEC), surface area (S), pH-dependent surface charge (Qv), mesoporosity, water holding capacity and plant available water (PAW) was noted. This positive effect of zeolite on plants could be due to extra nutrients supplied by the mineral (primarily potassium—1 ton of the studied zeolite contained around 15 kg of exchangeable potassium). In the second year of the experiment (NPK treatment on previously zeolitized soil), the zeolite presence did not impact plant yield. No long-term effect of the zeolite on plants was observed in the third year after soil zeolitization, when, as in the first year, only N fertilization was applied. That there were no significant changes in the above-mentioned physicochemical properties of the field soil after the addition of zeolite was most likely due to high dilution of the mineral in the soil (8 t/ha zeolite is only ~0.35% of the soil mass in the root zone). To determine how much zeolite is needed to improve soil physicochemical properties, much higher zeolite rates than those applied in the field were studied in the laboratory. The latter studies showed that CEC and S increased proportionally to the zeolite percentage in the soil. The Qv of the zeolite was lower than that of the soil, so a decrease in soil variable charge was observed due to zeolite addition. Surprisingly, a slight increase in PAW, even at the largest zeolite dose (from 9.5% for the control soil to 13% for a mixture of 40 g zeolite and 100 g soil), was observed. It resulted from small alterations of the soil macrostructure: although the input of small zeolite pores was seen in pore size distributions, the larger pores responsible for the storage of PAW were almost not affected by the zeolite addition.


CATENA ◽  
2021 ◽  
Vol 202 ◽  
pp. 105284
Author(s):  
Yafu Zhang ◽  
Jinman Wang ◽  
Yu Feng

Sign in / Sign up

Export Citation Format

Share Document