The Plant Diversity and Soil Physicochemical Properties of Five National Roads in Xuzhou Area, China

2013 ◽  
Vol 726-731 ◽  
pp. 4029-4032
Author(s):  
Xue Hong Tan ◽  
Cui Ying Zhang ◽  
Fan Cheng Kong ◽  
Da Wei Huang

The plant diversity and soil physicochemical properties of five national roads in Xuzhou area were studied with the investigation methods of uniform distribution and typical sample and determination of soil properties in laboratory. The results show as follow:(1) There were 40 kinds of arbor,23 kinds of shrub, 40 kinds of herb in five national roads. P. lasiocarpa, Ligustrum lucidum, Juniperus chinensis cv. Kaizuka, Photinia serrulata and T. repens played important roles ,their important values were at the top.(2) The order of comprehensive Shannon-Wiener index was G206>G104>G311>G310>G205. Artificial trees and shrubs inhibited the growth of weeds to some extent. (3) Soil physicochemical properties were affected by human beings, large soil bulk density, high pH value, nutrient deficiency were a common feature of soil in five national roads.

2020 ◽  
Vol 30 (1) ◽  
pp. 39-48
Author(s):  
B. Gautam ◽  
M. K. Chettri

Information on soil properties with regards to forest soil-depth are important for sustainable management of forest. The present study investigated the physicochemical properties of the top soil (0−30cm depth) in the three forests, viz. i) the Terai Shorea Forest (Bardia National Park), ii) the Evergreen Riverine Forest (Bardia National Park) and iii) the Puraina CF (Kailali district) of western Nepal. In the tropical forests of western Nepal, the soil texture is, moreover, loamy sand to sand. The soil bulk density ranged from 1.33−1.63 gm cm-3, and slightly increased with the increase in the soil-depth. The soil pH value ranged from 5.77−7.36. The soil organic carbon, total nitrogen (N), available phosphorus (P), and available potassium (K) were found to be in the ranges of 0.54−1.64%, 0.04−0.14%, 4.84−31.72 kg ha-1, and 204.35−557.44 kg ha-1, respectively, and all these values decreased with the increase in the soil-depth in both the forests of the protected area; however, this decreasing trend of the soil nutrients with the increase in the soil-depth was not observed in the Puraina CF as the values of the soil nutrients were lower within 0−10cm in the CF. The soil nutrients with all the depths were found to be the highest in the Terai Shorea Forest. The lower values of the soil nutrients in the Puraina CF were the result of resource extraction.  


2017 ◽  
Vol 37 (24) ◽  
Author(s):  
吕刚 LÜ Gang ◽  
王婷 WANG Ting ◽  
李叶鑫 LI Yexin ◽  
魏忠平 WEI Zhongping ◽  
王凯 WANG Kai

PeerJ ◽  
2021 ◽  
Vol 9 ◽  
pp. e11852
Author(s):  
Qian Lyu ◽  
Yi Shen ◽  
Xianwei Li ◽  
Gang Chen ◽  
Dehui Li ◽  
...  

Background Soil and understory vegetation are vital components of forest ecosystems. Identifying the interaction of plantation management to vegetation and soil is crucial for developing sustainable plantation ecosystem management strategies. As one of the main measures of close-to-nature management of forest plantation, few studies have paid attention to the effect of crop tree management on the soil properties and understory vegetation. Methods A 36-year-old Pinus massoniana plantation in Huaying city, Sichuan Province was taken as the research object to analyse the changes in undergrowth plant diversity and soil physicochemical properties under three different crop tree densities (100, 150, and 200 N/ha). Results Our results showed that the contents of available phosphorus, organic matter and hydrolysable nitrogen in the topsoil increased significantly after crop tree management, while content of available potassium decreased. The composition of shrub and herb layer was richer, and the dominant species were obviously replaced after crop tree management. The Shannon–Wiener index and Richness index of shrub layer, and the diversity of herb layer increased significantly after crop tree management. Herb layer diversity indexes and Richness index of shrub layer were closely related to soil organic matter, available phosphorus, hydrolysable nitrogen, available potassium, soil moisture and bulk density. As the main limiting factors for plant growth, nitrogen, phosphorus and potassium were closely related to plant diversity and to the distribution of the dominant species. At the initial stage of crop tree management, each treatment significantly improved the soil physicochemical properties and plant diversity of Pinus massoniana plantation, and the comprehensive evaluation was 200 N/ha >100 N/ha >150 N/ha >CK. Compared with other treatments, 200 N/ha had the best effect on improving the undergrowth environment of the Pinus massoniana plantation in the initial stage of crop tree management.


2017 ◽  
Vol 12 (1) ◽  
pp. 76-81 ◽  
Author(s):  
Shuling He ◽  
Lingfa Ma ◽  
Kentian Zhao ◽  
Jingjun Yang ◽  
Yuwei Chang

Abstract:In this paper, we studied the influence of soil physicochemical factors on the distribution of Cordyceps. We found that in the soil layers at different depths, the differences in pH values, total N (TN), total P (TP), available P (AP) and available K (AK) were not significant, but the differences in soil water content (WC), soil organic matter (OM), hydrolysable nitrogen (HN) and AK were significant. In the 5-10 cm layer, WC, pH and TP were significant factors that influence the distribution of Cordyceps - the number of Cordyceps was the largest and the characterization of the Cordyceps was also the best. TP was an important factor for the first principle component of the soil physicochemical properties that influenced the population distribution of Cordyceps. pH value was an important factor for the the second principal component of the soil physicochemical properties that influenced population distribution, and WC was an important factor for the third principal component, the soil physicochemical properties. This demonstrates that the requirement of Cordyceps for specific ranges of WC, soil acidity-alkalinity and AP in soil layers is very high.


2022 ◽  
Vol 12 ◽  
Author(s):  
Xiaodan Li ◽  
Songfeng Wang ◽  
Yating Fan ◽  
Zhe Zhou ◽  
Sheng Xu ◽  
...  

Corydalis yanhusuo, a precious herb of the Papaveraceae family, is widely used in multiple traditional Chinese medicines for the treatment of many painful conditions, and its medicinal part is the dried tuber. Yet how to improve this plant’s medicinal yield as well as its economic efficiency remains a key problem in its cultivation. The planting of C. yanhusuo in rotation with peanut (Arachis hypogaea L.) aims to improve land utilization efficiency, but the total production of tubers is severely reduced relative to fields without rotation. However, an increased yield was observed in C. yanhusuo plants grown in previously flooded fields (HR field) compared to the ones grown in the fields that had been used to cultivate peanut (PL field) or in fields without rotation or flooding (N field). Based on these phenomena, in this study, we explored the potential factors responsible for the altered growth/yield of C. yanhusuo under different field conditions. Soil physicochemical properties and the diversity and community of rhizobacteriome of C. yanhusuo were both analyzed. By testing several soil physicochemical properties, we found that the cation exchange capacity (CEC), soil organic matter (SOM), total nitrogen (TN), and pH value differed significantly among these three types of fields. 16S rRNA amplicon sequencing revealed stark differences in the composition, diversity, and potential functions of the bacterial community in the rhizosphere of C. yanhusuo plants grown in field with the peanut rotation or flooding. Notably, the Acidobacteria were enriched in the HR field, while Actinobacteria were enriched in the PL field. More importantly, further analysis showed that changed soil physicochemical properties could be one reason for why the rhizospheric bacterial community has changed; hence, soil physicochemical properties might also be affecting plant performance indirectly by regulating the rhizospheric bacterial community. The RDA analysis distinguished CEC as the most important soil physicochemical property influencing the structure and composition of the C. yanhusuo rhizobacteriome. In summary, our results suggest peanut rotation- and flooding-induced soil physicochemical properties changes would further impact the rhizobacteriome of C. yanhusuo albeit differentially, culminating in opposite effects upon the plant growth and medicinal yield of C. yanhusuo.


PeerJ ◽  
2021 ◽  
Vol 9 ◽  
pp. e12222
Author(s):  
Qian Lyu ◽  
Jiangli Liu ◽  
Junjie Liu ◽  
Yan Luo ◽  
Luman Chen ◽  
...  

As one means of close-to-nature management, forest gaps have an important impact on the ecological service function of plantations. To improve the current situation of P. massoniana plantations, three different sizes of forest gaps (large gaps, medium gaps and small gaps) were established to observe whether gap setting can improve the soil fertility and plant diversity of forest plantations. The results showed that compared with the control, the soil organic matter content of different soil layers increased significantly in the medium forest gap and large forest gap. The content of soil organic matter in the surface layer of the middle gap had the largest increase (80.64%). Compared with the control, the content of soil-available potassium between different soil layers decreased significantly by 15.93% to 25.80%. The soil hydrolysable nitrogen reached its maximum under the medium gap. Soil moisture showed significant changes among different gap treatments, different soil layers and their interaction, decreasing significantly in large gaps and small gaps but increasing significantly in medium gaps. The soil bulk density decreased significantly compared with the control, and the surface soil reached the minimum in the medium gap. There were different plant species in forest gaps of different sizes, and shrub layer plants were more sensitive to gap size differences than herb layer plants. The plant diversity indices of the shrub layer increased significantly and showed a maximum under the medium gap. The plant diversity of the herb layer showed the opposite trend, and the Shannon-Wiener index, Simpson index and Pielou index were significantly lower than those of the control. RDA showed that different gap treatments had significant effects on the distribution of plants under the forest. Soil available potassium, soil moisture and soil bulk density affected the distribution and diversity of plants under the forest, serving as the limiting factors of plant growth. In forest management, if we strictly consider the improvement of plant diversity and soil physicochemical properties, these results suggest that a medium gap should be established in a plantation for natural restoration.


Materials ◽  
2021 ◽  
Vol 14 (10) ◽  
pp. 2617
Author(s):  
Alicja Szatanik-Kloc ◽  
Justyna Szerement ◽  
Agnieszka Adamczuk ◽  
Grzegorz Józefaciuk

Thousands of tons of zeolitic materials are used yearly as soil conditioners and components of slow-release fertilizers. A positive influence of application of zeolites on plant growth has been frequently observed. Because zeolites have extremely large cation exchange capacity, surface area, porosity and water holding capacity, a paradigm has aroused that increasing plant growth is caused by a long-lasting improvement of soil physicochemical properties by zeolites. In the first year of our field experiment performed on a poor soil with zeolite rates from 1 to 8 t/ha and N fertilization, an increase in spring wheat yield was observed. Any effect on soil cation exchange capacity (CEC), surface area (S), pH-dependent surface charge (Qv), mesoporosity, water holding capacity and plant available water (PAW) was noted. This positive effect of zeolite on plants could be due to extra nutrients supplied by the mineral (primarily potassium—1 ton of the studied zeolite contained around 15 kg of exchangeable potassium). In the second year of the experiment (NPK treatment on previously zeolitized soil), the zeolite presence did not impact plant yield. No long-term effect of the zeolite on plants was observed in the third year after soil zeolitization, when, as in the first year, only N fertilization was applied. That there were no significant changes in the above-mentioned physicochemical properties of the field soil after the addition of zeolite was most likely due to high dilution of the mineral in the soil (8 t/ha zeolite is only ~0.35% of the soil mass in the root zone). To determine how much zeolite is needed to improve soil physicochemical properties, much higher zeolite rates than those applied in the field were studied in the laboratory. The latter studies showed that CEC and S increased proportionally to the zeolite percentage in the soil. The Qv of the zeolite was lower than that of the soil, so a decrease in soil variable charge was observed due to zeolite addition. Surprisingly, a slight increase in PAW, even at the largest zeolite dose (from 9.5% for the control soil to 13% for a mixture of 40 g zeolite and 100 g soil), was observed. It resulted from small alterations of the soil macrostructure: although the input of small zeolite pores was seen in pore size distributions, the larger pores responsible for the storage of PAW were almost not affected by the zeolite addition.


CATENA ◽  
2021 ◽  
Vol 202 ◽  
pp. 105284
Author(s):  
Yafu Zhang ◽  
Jinman Wang ◽  
Yu Feng

Sign in / Sign up

Export Citation Format

Share Document