Immunophenotypic Attributes of Benign Peripheral Blood γδ T Cells and Conditions Associated With Their Increase

2008 ◽  
Vol 132 (11) ◽  
pp. 1774-1780
Author(s):  
Anja C. Roden ◽  
William G. Morice ◽  
Curtis A. Hanson

Abstract Context.—In comparison to αβ T cells, little is known about the immunophenotype of healthy peripheral blood γδ T cells or about conditions associated with expansion of this usually minor T-cell subset. Objective.—To study the immunophenotype of increased nonneoplastic peripheral blood γδ T cells and to determine clinical conditions associated with this laboratory finding. Design.—Flow cytometric T-cell phenotyping studies performed on 352 consecutive peripheral blood specimens were reviewed, and 62 cases (18%) in which γδ T cells comprised either more than 5% of the total lymphocytes or had an absolute count of more than 200 cells per μL or both, were studied further. Clinical data were available from 36 cases. Results.—The γδ T cells often had an immunophenotype distinct from the αβ T cells, with differences in CD5 expression as the most common (n = 17), followed by differences in CD3 (n = 6) and CD7 (n = 3). CD16 coexpression by the γδ T cells was also frequent (n = 20). In 28 (78%) of 36 cases, there were one or more associated conditions: infection/inflammatory disease (n = 18), autoimmune disease (n = 9), lymphoproliferative disorder (n = 6), and splenectomy (n = 3). Conclusions.—Circulating γδ T cells are immunophenotypically distinct from αβ T cells, and mild increases in these cells are not uncommon and may be associated with immune system activation and splenectomy. Recognition of this phenomenon is important because reactive γδ T cells can exhibit distinctive immunophenotypic features that are also encountered in neoplastic conditions, such as T-cell large granular lymphocytic leukemia.

Cells ◽  
2021 ◽  
Vol 10 (2) ◽  
pp. 373
Author(s):  
Nicola Beucke ◽  
Svenja Wingerter ◽  
Karin Hähnel ◽  
Lisbeth Aagaard Larsen ◽  
Kaare Christensen ◽  
...  

Adaptive as well as innate immune traits are variously affected by environmental and genetic influences, but little is known about the impact of genetics on the diversity, differentiation and functionality of γδ T cells in humans. Here, we analyzed a cohort of 95 middle-aged twins from the Danish Twin Registry. The differentiation status of peripheral αβ and γδ T cells was assessed by flow cytometry based on the surface expression of CD27, CD28 and CD45RA. Our data confirm the established associations of latent cytomegalovirus (CMV) infection with an accumulation of late differentiated memory T cells in the αβ compartment as well as in the Vδ1+ γδ T cell subset. A comparison of differentiation phenotypes of γδ and αβ T cells that were not affected by CMV seropositivity identified a significant correlation of early differentiated (ED) Vδ2+ and intermediate differentiated (ID) CD4+ T cells in monozygotic (MZ), but not in dizygotic (DZ) co-twins. Thus, our data suggest a genetic influence on the differentiation of γδ and αß T cell subsets.


2001 ◽  
Vol 107 (2) ◽  
pp. 359-366 ◽  
Author(s):  
Amy L. Woodward ◽  
Jonathan M. Spergel ◽  
Harri Alenius ◽  
Emiko Mizoguchi ◽  
Atul K. Bhan ◽  
...  

Blood ◽  
2004 ◽  
Vol 104 (12) ◽  
pp. 3463-3471 ◽  
Author(s):  
Christoph Hess ◽  
Terry K. Means ◽  
Patrick Autissier ◽  
Tonia Woodberry ◽  
Marcus Altfeld ◽  
...  

CD8 T cells play a key role in host defense against intracellular pathogens. Efficient migration of these cells into sites of infection is therefore intimately linked to their effector function. The molecular mechanisms that control CD8 T-cell trafficking into sites of infection and inflammation are not well understood, but the chemokine/chemokine receptor system is thought to orchestrate this process. Here we systematically examined the chemokine receptor profile expressed on human CD8 T cells. Surprisingly, we found that CXC chemokine receptor 1 (CXCR1), the predominant neutrophil chemokine receptor, defined a novel interleukin-8/CXC ligand 8 (IL-8/CXCL8)–responsive CD8 T-cell subset that was enriched in perforin, granzyme B, and interferon-γ (IFNγ), and had high cytotoxic potential. CXCR1 expression was down-regulated by antigen stimulation both in vitro and in vivo, suggesting antigen-dependent shaping of the migratory characteristics of CD8 T cells. On virus-specific CD8 T cells from persons with a history of Epstein-Barr virus (EBV) and influenza infection, CXCR1 expression was restricted to terminally differentiated effector memory cells. In HIV-1 infection, CXCR1-expressing HIV-1–specific CD8 T cells were present only in persons who were able to control HIV-1 replication during structured treatment interruptions. Thus, CXCR1 identifies a subset of CD8 T cells poised for immediate cytotoxicity and early recruitment into sites of innate immune system activation.


2021 ◽  
Vol 11 (9) ◽  
pp. 923
Author(s):  
Josephine G. M. Strijker ◽  
Ronja Pscheid ◽  
Esther Drent ◽  
Jessica J. F. van der Hoek ◽  
Bianca Koopmans ◽  
...  

Currently ~50% of patients with a diagnosis of high-risk neuroblastoma will not survive due to relapsing or refractory disease. Recent innovations in immunotherapy for solid tumors are highly promising, but the low MHC-I expression of neuroblastoma represents a major challenge for T cell-mediated immunotherapy. Here, we propose a novel T cell-based immunotherapy approach for neuroblastoma, based on the use of TEG002, αβ-T cells engineered to express a defined γδ-T cell receptor, which can recognize and kill target cells independent of MHC-I. In a co-culture killing assay, we showed that 3 out of 6 neuroblastoma organoids could activate TEG002 as measured by IFNγ production. Transcriptional profiling showed this effect correlates with an increased activity of processes involved in interferon signaling and extracellular matrix organization. Analysis of the dynamics of organoid killing by TEG002 over time confirmed that organoids which induced TEG002 activation were efficiently killed independent of their MHC-I expression. Of note, efficacy of TEG002 treatment was superior to donor-matched untransduced αβ-T cells or endogenous γδ-T cells. Our data suggest that TEG002 may be a promising novel treatment option for a subset of neuroblastoma patients.


Cancers ◽  
2020 ◽  
Vol 12 (7) ◽  
pp. 1974 ◽  
Author(s):  
Linde Dekker ◽  
Coco de Koning ◽  
Caroline Lindemans ◽  
Stefan Nierkens

Allogeneic (allo) hematopoietic cell transplantation (HCT) is the only curative treatment option for patients suffering from chemotherapy-refractory or relapsed hematological malignancies. The occurrence of morbidity and mortality after allo-HCT is still high. This is partly correlated with the immunological recovery of the T cell subsets, of which the dynamics and relations to complications are still poorly understood. Detailed information on T cell subset recovery is crucial to provide tools for better prediction and modulation of adverse events. Here, we review the current knowledge regarding CD4+ and CD8+ T cells, γδ T cells, iNKT cells, Treg cells, MAIT cells and naive and memory T cell reconstitution, as well as their relations to outcome, considering different cell sources and immunosuppressive therapies. We conclude that the T cell subsets reconstitute in different ways and are associated with distinct adverse and beneficial events; however, adequate reconstitution of all the subsets is associated with better overall survival. Although the exact mechanisms involved in the reconstitution of each T cell subset and their associations with allo-HCT outcome need to be further elucidated, the data and suggestions presented here point towards the development of individualized approaches to improve their reconstitution. This includes the modulation of immunotherapeutic interventions based on more detailed immune monitoring, aiming to improve overall survival changes.


Author(s):  
Hannah Kaminski ◽  
Coline Ménard ◽  
Bouchra El Hayani ◽  
And-Nan Adjibabi ◽  
Gabriel Marsères ◽  
...  

Abstract Cytomegalovirus (CMV) is a major infectious cause of death and disease after transplantation. We have previously demonstrated that the tissue-associated adaptive Vδ2neg γδ T cells are key effectors responding to CMV and associated with recovery, contrasting with their innatelike circulating counterparts, the Vγ9posVδ2pos T cells that respond to phosphoantigens but not to CMV. A third Vγ9negVδ2pos subgroup with adaptive functions has been described in adults. In the current study, we demonstrate that these Vγ9negVδ2pos T cells are also components of the CMV immune response while presenting with distinct characteristics from Vδ2neg γδ T cells. In a cohort of kidney transplant recipients, CMV seropositivity was the unique clinical parameter associated with Vγ9negVδ2pos T-cell expansion and differentiation. Extensive phenotyping demonstrated their substantial cytotoxic potential and activation during acute CMV primary infection or reinfection. In vitro, Vγ9negVδ2pos T cells responded specifically to CMV-infected cells in a T-cell receptor–dependent manner and through strong interferon γ production. Finally, Vγ9negVδ2pos T cells were the only γδ T-cell subset in which expansion was tightly correlated with the severity of CMV disease. To conclude, our results identify a new player in the immune response against CMV and open interesting clinical perspectives for using Vγ9negVδ2pos T cells as an immune marker for CMV disease severity in immunocompromised patients.


2019 ◽  
Vol 11 (513) ◽  
pp. eaax9364 ◽  
Author(s):  
Yin Wu ◽  
Fernanda Kyle-Cezar ◽  
Richard T. Woolf ◽  
Cristina Naceur-Lombardelli ◽  
Julie Owen ◽  
...  

Innate-like tissue-resident γδ T cell compartments capable of protecting against carcinogenesis are well established in mice. Conversely, the degree to which they exist in humans, their potential properties, and their contributions to host benefit are mostly unresolved. Here, we demonstrate that healthy human breast harbors a distinct γδ T cell compartment, primarily expressing T cell receptor (TCR) Vδ1 chains, by comparison to Vδ2 chains that predominate in peripheral blood. Breast-resident Vδ1+ cells were functionally skewed toward cytolysis and IFN-γ production, but not IL-17, which has been linked with inflammatory pathologies. Breast-resident Vδ1+ cells could be activated innately via the NKG2D receptor, whereas neighboring CD8+ αβ T cells required TCR signaling. A comparable population of Vδ1+ cells was found in human breast tumors, and when paired tumor and nonmalignant samples from 11 patients with triple-negative breast cancer were analyzed, progression-free and overall survival correlated with Vδ1+ cell representation, but not with either total γδ T cells or Vδ2+ T cells. As expected, progression-free survival also correlated with αβ TCRs. However, whereas in most cases TCRαβ repertoires focused, typical of antigen-specific responses, this was not observed for Vδ1+ cells, consistent with their innate-like responsiveness. Thus, maximal patient benefit may accrue from the collaboration of innate-like responses mounted by tissue-resident Vδ1+ compartments and adaptive responses mounted by αβ T cells.


2015 ◽  
Vol 84 (2) ◽  
pp. 580-589 ◽  
Author(s):  
Getahun Abate ◽  
Charles T. Spencer ◽  
Fahreta Hamzabegovic ◽  
Azra Blazevic ◽  
Mei Xia ◽  
...  

Numerous pathogens, includingMycobacterium tuberculosis, can activate human γ9δ2T cells to proliferate and express effector mechanisms. γ9δ2T cells can directly inhibit the growth of intracellular mycobacteria and may also act as antigen-presenting cells (APC). Despite evidence for γδ T cells having the capacity to function as APC, the mechanisms involved and importance of these effects on overall tuberculosis (TB) immunity are unknown. We preparedM. tuberculosis-specific γ9δ2T cell lines to study their direct protective effects and APC functions forM. tuberculosis-specific αβ T cells. The direct inhibitory effects on intracellular mycobacteria were measured, and the enhancing effects on proliferative and effector responses of αβ T cells assessed. Furthermore, the importance of cell-to-cell contact and soluble products for γ9δ2T cell effector responses and APC functions were investigated. We demonstrate, in addition to direct inhibitory effects on intracellular mycobacteria, the following: (i) γ9δ2T cells enhance the expansion ofM. tuberculosis-specific αβ T cells and increase the ability of αβ T cells to inhibit intracellular mycobacteria; (ii) although soluble mediators are critical for the direct inhibitory effects of γ9δ2T cells, their APC functions do not require soluble mediators; (iii) the APC functions of γ9δ2T cells involve cell-to-cell contact that is dependent on CD40-CD40 ligand (CD40L) interactions; and (iv) fully activated CD4+αβ T cells and γ9δ2T cells provide similar immune enhancing/APC functions forM. tuberculosis-specific T cells. These effector and helper effects of γ9δ2T cells further indicate that these T cells should be considered important new targets for new TB vaccines.


Blood ◽  
1979 ◽  
Vol 53 (6) ◽  
pp. 1066-1075 ◽  
Author(s):  
EL Reinherz ◽  
LM Nadler ◽  
DS Rosenthal ◽  
WC Moloney ◽  
SF Schlossman

Abstract Circulating peripheral blood tumor cells in four cases of chronic lymphoproliferative disease were immunologically characterized. By the use of T-cell-specific heteroantisera and indirect immunofluorescence, all were shown to involve proliferation of malignant T cells. Three cases demonstrated morphologic and clinical features consistent with chronic lymphocytic leukemia (CLL), and one case presented as a lymphosarcoma cell leukemia. Antisera specific for normal human T-cell subsets defined the malignant T cells in each case as arising from the TH2--subset. This subset normally constitutes approximately 80% of human peripheral blood T cells. Terminal deoxynucleotidyl transferase (TdT) was not detected in any of the T-cell CLL cases, thus supporting the notion that T-cell CLL represents a malignancy of a mature phenotype. The one patient with lymphosarcoma whose tumor cells were TdT-positive subsequently developed T-cell acute lymphoblastic leukemia (ALL). Moreover, la-like antigen (p23,30) was detected on two of these tumor cell populations. In addition, it was shown that not all tumor cells were E-rosette-positive, since only cells from 3 of 4 patients were capable of forming spontaneous rosettes. These findings demonstrate that heteroantisera can provide an additional important tool for dissecting the heterogeneity of T-cell leukemias and for relating them to more differentiated normal T cells.


Sign in / Sign up

Export Citation Format

Share Document