scholarly journals Genetic diversity of elite wheat mutant lines using morphological characters and molecular markers

2020 ◽  
Vol 16 (12) ◽  
pp. 1766-1776
Author(s):  
K. Chemwok Philip ◽  
G. Kinyua Mirriam ◽  
K. Kiplagat Oliver ◽  
K. Ego Amos
2015 ◽  
Vol 14 (25) ◽  
pp. 2066-2079 ◽  
Author(s):  
Silva Rosa Pazeto Mariana ◽  
Helena Uneda Trevisoli Sandra ◽  
Arcenio Pimentel Correa Aretha ◽  
Formice Vianna Viviane ◽  
Carvalho Leite Daniel ◽  
...  

2014 ◽  
Vol 50 (No. 2) ◽  
pp. 177-184 ◽  
Author(s):  
B. Gixhari ◽  
M. Pavelková ◽  
H. Ismaili ◽  
H. Vrapi ◽  
A. Jaupi ◽  
...  

In order to investigate the genetic diversity present in the pea germplasm stored in the Albanian genebank, we analyzed 28 local pea genotypes of Albanian origins for 23 quantitative morphological traits, as well as 14 retrotransposon-based insertion polymorphism (RBIP) molecular markers. The study of morphological characters carried out during three growing seasons (2010, 2011 and 2012) had the objective of characterization of traits useful in breeding programs. RBIP marker analysis revealed the genetic similarity in range from 0.06 to 0.45. ANOVA, principal component analysis (PCA) and cluster analysis was used to visualize the association among different traits. Most of the quantitative morphological traits showed significant differences. PCA and cluster analysis (Ward’s method) carried out for morphological traits divided the local pea genotypes into three clusters. Finally, the study identified the agronomicaly important traits which will facilitate the maintenance and agronomic evaluation of the collections.


2021 ◽  
Author(s):  
Luis Augusto Becerra Lopez-Lavalle ◽  
Adriana Bohorquez-Chaux ◽  
Xiaofei Zhang

The identification of cassava cultivars is important for understanding the crop’s production system, enabling crop improvement practitioners to design and deliver tailored solutions with which farmers can secure high yields and sustainable production. Across the lowland tropics today, a large number improved varieties and landraces of cassava are under cultivation, making it inefficient for breeders and geneticists to set improvement goals for the crop. The identification and characterization of cassava genotypes is currently based on either morphological characters or molecular features. The major aim of cultivar identification is to catalog the crop’s genetic diversity, but a consensus approach has still not been established. Of the two approaches to the identification of variety, morphological characters seem to account for most of the genetic variability reported in cassava. However, these characters must be treated with caution, as phenotypic changes can be due to environmental and climatic conditions as well as to the segregation of new highly heterozygous populations, thus, making the accurate identification of varieties difficult. The use of molecular markers has allowed researchers to establish accurate relationships between genotypes, and to measure and track their heterozygous status. Since the early 1990’s, molecular geneticists working with cassava have been developing and deploying DNA-based tools for the identification and characterization of landraces or improved varieties. Hence, in the last five years, economists and social scientists have adopted DNA-based variety identification to measure the adoption rates of varieties, and to support the legal protection of breeder’s rights. Despite the advances made in the deployment of molecular markers for cassava, multiple platform adoption, as well as their costs and variable throughput, has limited their use by practitioners of crop improvement of cassava. The post-genomic era has produced a large number of genome and transcriptome sequencing tools, and has increased our capacity to develop and deploy genome-based tools to account for the crop’s genetic variability by accurately measuring and tracking allele diversity. These technologies allow the creation of haplotype catalogs that can be widely shared across the cassava crop improvement community. Low-density genome-wide SNP markers might be the solution for the wide adoption of molecular tools for the identification of cultivars or varieties of cassava. In this review we survey the efforts made in the past 30 years to establish the tools for cultivar identification of cassava in farmer’s fields and gene banks. We also emphasize the need for a global picture of the genetic diversity of this crop, at its center of origin in South America.


Biologija ◽  
2008 ◽  
Vol 54 (2) ◽  
pp. 66-74 ◽  
Author(s):  
Jolanta Patamsytė ◽  
Donatas Žvingila ◽  
Juozas Labokas ◽  
Virgilijus Baliuckas ◽  
Laimutė Balčiūnienė ◽  
...  

HortScience ◽  
1998 ◽  
Vol 33 (3) ◽  
pp. 492f-493
Author(s):  
Roberto F. Vieira ◽  
James E. Simon ◽  
Peter Goldsbrough ◽  
Antonio Figueira

Essential oils extracted from basil (Ocimum spp.) by steam distillation are used to flavor foods, oral products, in fragrances, and in traditional medicines. The genus Ocimum contains around 30 species native to the tropics and subtropics, with some species naturalized and/or cultivated in temperate areas. Interand intraspecific hybridization have created significant confusion in the botanical systematics of this genus. Taxonomy of basil (O. basilicum) is also complicated by the existence of numerous varieties, cultivars, and chemotypes within the species that do not differ significantly in morphology. In this study we are using RAPD markers and volatile oil composition to characterize the genetic diversity among the most economically important Ocimum species. We hypothesize that the genetic similarity revealed by molecular markers will more accurately reflect the morphological and chemical differences in Ocimum than essential oil composition per se. Preliminary research using five Ocimum species, four undetermined species, and eight varieties of O. basilicum (a total of 19 accessions) generated 107 polymorphic fragments amplified with 19 primers. RAPDs are able to discriminate between Ocimum species, but show a high degree of similarity between O. basilicum varieties. The genetic distance between nine species and among 55 accessions within the species O. americanum, O. basilicum, O. campechianum, O. × citriodorum, O. gratissimum, O. kilimandscharium, O. minimum, O. selloi, and O. tenuiflorum will be analyzed by matrix of similarity and compared to the volatile oil profile. This research will for the first time apply molecular markers to characterize the genetic diversity of Ocimum associate with volatile oil constituent.


2021 ◽  
Vol 48 (3) ◽  
pp. 2253-2260
Author(s):  
Lameck A. Nyabera ◽  
Inosters W. Nzuki ◽  
Steven M. Runo ◽  
Peris W. Amwayi

2012 ◽  
Vol 92 (6) ◽  
pp. 1121-1133 ◽  
Author(s):  
S. C. Debnath ◽  
Y. L. Siow ◽  
J. Petkau ◽  
D. An ◽  
N. V. Bykova

Debnath, S. C., Siow, Y. L., Petkau, J., An, D. and Bykova, N. V. 2012. Molecular markers and antioxidant activity in berry crops: Genetic diversity analysis. Can. J. Plant Sci. 92: 1121–1133. An improved understanding of important roles of dietary fruits in maintaining human health has led to a dramatic increase of global berry crop production. Berry fruits contain relatively high levels of vitamin C, cellulose and pectin, and produce anthocyanins, which have important therapeutic values, including antitumor, antiulcer, antioxidant and anti-inflammatory activities. There is a need to develop reliable methods to identify berry germplasm and assess genetic diversity/relatedness for dietary properties in berry genotypes for practical breeding purposes through genotype selection in a breeding program for cultivar development, and proprietary-rights protection. The introduction of molecular biology techniques, such as DNA-based markers, allows direct comparison of different genetic materials independent of environmental influences. Significant progress has been made in diversity analysis of wild cranberry, lowbush blueberry, lingonberry and cloudberry germplasm, and in strawberry and raspberry cultivars and advanced breeding lines developed in Canada. Inter simple sequence repeat (ISSR) markers detected an adequate degree of polymorphism to differentiate among berry genotypes, making this technology valuable for cultivar identification and for the more efficient choice of parents in the current berry improvement programs. Although multiple factors affect antioxidant activity, a wide range of genetic diversity has been reported in wild and cultivated berry crops. Diversity analysis based on molecular markers did not agree with those from antioxidant activity. The paper also discusses the issues that still need to be addressed to utilize the full potential of molecular techniques including expressed sequence tag-polymerase chain reaction (EST-PCR) analysis to develop improved environment-friendly berry cultivars suited to the changing needs of growers and consumers.


Sign in / Sign up

Export Citation Format

Share Document