scholarly journals Role of leaf rolling on agronomic performances of durum wheat subjected to water stress

2020 ◽  
Vol 16 (6) ◽  
pp. 791-810
Author(s):  
Ben-Amar Amal ◽  
Véry Anne-Aliénor ◽  
Sentenac Hervé ◽  
Bouizgaren Abdelaziz ◽  
Mahboub Said ◽  
...  
2014 ◽  
Vol 41 (11) ◽  
pp. 1138 ◽  
Author(s):  
Gorka Erice ◽  
Alvaro Sanz-Sáez ◽  
Amadeo Urdiain ◽  
Jose L. Araus ◽  
Juan José Irigoyen ◽  
...  

Despite its relevance, few studies to date have analysed the role of harvest index (HI) in the responsiveness of wheat (Triticum spp.) to elevated CO2 concentration ([CO2]) under limited water availability. The goal of the present work was to characterise the role of HI in the physiological responsiveness of durum wheat (Triticum durum Desf.) exposed to elevated [CO2] and terminal (i.e. during grain filling) water stress. For this purpose, the performance of wheat plants with high versus low HI (cvv. Sula and Blanqueta, respectively) was assessed under elevated [CO2] (700 μmol mol–1 vs 400 μmol mol–1 CO2) and terminal water stress (imposed after ear emergence) in CO2 greenhouses. Leaf carbohydrate build-up combined with limitations in CO2 diffusion (in droughted plants) limited the responsiveness to elevated [CO2] in both cultivars. Elevated [CO2] only increased wheat yield in fully watered Sula plants, where its larger HI prevented an elevated accumulation of total nonstructural carbohydrates. It is likely that the putative shortened grain filling period in plants exposed to water stress also limited the responsiveness of plants to elevated [CO2]. In summary, our study showed that even under optimal water availability conditions, only plants with a high HI responded to elevated [CO2] with increased plant growth, and that terminal drought constrained the responsiveness of wheat plants to elevated [CO2].


2020 ◽  
Vol 16 (7) ◽  
pp. 1061-1068
Author(s):  
Ben-Amar Amal ◽  
Mahboub Said ◽  
Bouizgaren Abdelaziz ◽  
Mouradi Mouhammed ◽  
Elhaq Nsarellah Nasser ◽  
...  

2020 ◽  
Vol 7 (2) ◽  
pp. 44-60
Author(s):  
R. Bousba ◽  
M. Rached-Kanouni ◽  
N. Benghersallah ◽  
A. Djekoune ◽  
N. Ykhlef

AbstractSurvival under stressful circumstance depends on the plant’s aptitude to perceive the stimulus, generate and transmit the signals, and initiate various physiological and biochemical changes. This study aims to evaluate the exogenous seed treatment by abscissic acid (ABA) in durum wheat genotypes under water stress conditions. In this investigation, a hydroponic experiment was conducted to evaluate the potential role of exogenously applied abscicic acid in improving drought tolerance in wheat. Three contrasting wheat genotypes were used in this work: Hoggar, Hedba3 and Sigus. Two levels of water stress were induced: 2h and 4h, the aim of this work was to evaluate the action of seed exogenous treatment with ABA for 8 and 16h on physiological and biochemical parameters like stomatal resistance, antioxidant enzyme activity and quantification of ABA by HPLC. The results showed that water stress caused a decrease in endogenous ABA concentration in the roots of the stressed varieties with the exception of Hedba3. Furthermore, after ABA treatment for 16h, the two genotypes Hedba 3 and Hogar showed a higher accumulation of this phytohormone, compared to Sigus variety which marks a decrease in this concentration and which can be explained by the consumption of the ABA in the defense against the ROS.


1975 ◽  
Vol 53 (24) ◽  
pp. 3041-3050 ◽  
Author(s):  
C. H. A. Little

In experiments with attached and detached shoots of balsam fir, Abies balsamea L., synthetic (±)abscisic acid (ABA) (1) reduced photosynthesis and transpiration by inducing stomatal closure, (2) inhibited indoleacetic acid (IAA) - induced cambial activity in photosynthesizing and non-photosynthesizing shoots, and (3) inhibited the basipetal movement of [14C]IAA. Neither gibberellic acid nor kinetin counteracted the inhibitory effect of (±)ABA on IAA-induced cambial activity. In addition it was demonstrated that increasing the internal water stress increased the level of endogenous ABA in the phloem–cambial region of bark peelings and decreased the basipetal movement of [14C]IAA through branch sections. On the basis of these findings it is proposed that internal water stress inhibits cambial activity, partly through increasing the level of ABA; the ABA acts to decrease the provision of carbohydrates and auxin that are required for cambial growth.


2014 ◽  
Vol 2014 ◽  
pp. 1-9 ◽  
Author(s):  
Jalel Mahouachi ◽  
María F. López-Climent ◽  
Aurelio Gómez-Cadenas

The pattern of change in the endogenous levels of several plant hormones and hydroxycinnamic acids in addition to growth and photosynthetic performance was investigated in banana plants (Musa acuminatacv. “Grand Nain”) subjected to various cycles of drought. Water stress was imposed by withholding irrigation for six periods with subsequent rehydration. Data showed an increase in abscisic acid (ABA) and indole-3-acetic acid (IAA) levels, a transient increase in salicylic acid (SA) concentration, and no changes in jasmonic acid (JA) after each period of drought. Moreover, the levels of ferulic (FA) and cinnamic acids (CA) were increased, and plant growth and leaf gas exchange parameters were decreased by drought conditions. Overall, data suggest an involvement of hormones and hydroxycinnamic acids in plant avoidance of tissue dehydration. The increase in IAA concentration might alleviate the senescence of survival leaves and maintained cell elongation, and the accumulation of FA and CA could play a key role as a mechanism of photoprotection through leaf folding, contributing to the effect of ABA on inducing stomatal closure. Data also suggest that the role of SA similarly to JA might be limited to a transient and rapid increase at the onset of the first period of stress.


2000 ◽  
Vol 29 (1) ◽  
pp. 63-69 ◽  
Author(s):  
Jean Garbaye

Forest trees live in enforced symbiosis with specialized fungi that form composite organs (ectomycorrhizas) with fine roots. This paper examines how this association contributes to the water status of trees and how it plays a major role in the protection mechanisms by which trees and forest stands resist drought-induced water stress. It shows how ectomycorrhizal symbiosis has both direct effects (at the uptake level) and indirect effects (at the regulation level) on the water status of trees. The facts presented are discussed in terms of forest adaptation to changing environmental conditions and the practical consequences for the sustainable management of forest ecosystems.


2016 ◽  
Vol 5 (1) ◽  
pp. 107-120 ◽  
Author(s):  
Meterfi Baroudi ◽  
Wael El Zerey ◽  
Salaheddine Bachir Bouiadjra

In semi arid region of the South West of the Mediterranean basin, low rainfall, and thermal fluctuations cause water stress situations affecting at different levels, with varying intensities, the development of durum wheat yields. This work aims to study the major climatic factors that determine water environment of durum wheat in its reproductive period and assess their trend related to yields of the grain. Comparing diagrams of Bagnoul and Gaussen, established for two periods (1913-1937 and 1977-2014), highlighted an increase in the duration of the dry season due to rising temperatures, especially summer and a decrease in volume of the seasonal rainfall involving therefore water stress during the reproductive phase of cereal. The analysis of water regime in the past three decades, for the months of March, April and May, through the application of the approach of UNESCO-FAO, highlighted a very large variability in intensity of water stress during grain development period during the last years and also the tendency of the spring season months to be more drought. This reflects the complexity of the selection for yield components in this region. International Journal of Environment Vol. 5 (1) 2016,  pp: 107-120


Sign in / Sign up

Export Citation Format

Share Document