scholarly journals Diversity, structure and health of a cocoa based agroforest system in the Humid dense forest, East Cameroon

2021 ◽  
Vol 13 (4) ◽  
pp. 165-182
Author(s):  
Henry Seraphin Essomba ◽  
Jean Lagarde Betti ◽  
Richard Priso ◽  
Jules Ngueguim ◽  
Oumar Farrick Njimbam
1996 ◽  
pp. 64-67 ◽  
Author(s):  
Nguen Nghia Thin ◽  
Nguen Ba Thu ◽  
Tran Van Thuy

The tropical seasonal rainy evergreen broad-leaved forest vegetation of the Cucphoung National Park has been classified and the distribution of plant communities has been shown on the map using the relations of vegetation to geology, geomorphology and pedology. The method of vegetation mapping includes: 1) the identifying of vegetation types in the remote-sensed materials (aerial photographs and satellite images); 2) field work to compile the interpretation keys and to characterize all the communities of a study area; 3) compilation of the final vegetation map using the combined information. In the classification presented a number of different level vegetation units have been identified: formation classes (3), formation sub-classes (3), formation groups (3), formations (4), subformations (10) and communities (19). Communities have been taken as mapping units. So in the vegetation map of the National Park 19 vegetation categories has been shown altogether, among them 13 are natural primary communities, and 6 are the secondary, anthropogenic ones. The secondary succession goes through 3 main stages: grassland herbaceous xerophytic vegetation, xerophytic scrub, dense forest.


2021 ◽  
Vol 13 (5) ◽  
pp. 115
Author(s):  
Mike Oluwatayo Ojo ◽  
Davide Adami ◽  
Stefano Giordano

Smart agriculture and wildlife monitoring are one of the recent trends of Internet of Things (IoT) applications, which are evolving in providing sustainable solutions from producers. This article details the design, development and assessment of a wildlife monitoring application for IoT animal repelling devices that is able to cover large areas, thanks to the low power wide area networks (LPWAN), which bridge the gap between cellular technologies and short range wireless technologies. LoRa, the global de-facto LPWAN, continues to attract attention given its open specification and ready availability of off-the-shelf hardware, with claims of several kilometers of range in harsh challenging environments. At first, this article presents a survey of the LPWAN for smart agriculture applications. We proceed to evaluate the performance of LoRa transmission technology operating in the 433 MHz and 868 MHz bands, aimed at wildlife monitoring in a forest vegetation area. To characterize the communication link, we mainly use the signal-to-noise ratio (SNR), received signal strength indicator (RSSI) and packet delivery ratio (PDR). Findings from this study show that achievable performance can greatly vary between the 433 MHz and 868 MHz bands, and prompt caution is required when taking numbers at face value, as this can have implications for IoT applications. In addition, our results show that the link reaches up to 860 m in the highly dense forest vegetation environment, while in the not so dense forest vegetation environment, it reaches up to 2050 m.


2018 ◽  
Vol 190 ◽  
pp. 67-76 ◽  
Author(s):  
Yang Yi ◽  
Olusola Lamikanra ◽  
Jie Sun ◽  
Li-Mei Wang ◽  
Ting Min ◽  
...  

2017 ◽  
Vol 40 (1) ◽  
pp. 1-8
Author(s):  
Bhawna Adhikari ◽  
◽  
Bhawana Kapkoti ◽  
Neelu Lodhiyal ◽  
L.S. Lodhiyal ◽  
...  

Present study was carried out to assess the structure and regeneration of Sal forests in Shiwalik region of Kumaun Himalaya. Vegetation analysis and tree canopy density was determined by using quadrat and densitometer, respectively. Density of seedlings, saplings and trees was 490-14067, 37-1233, and 273-863 ind.ha-1 respectively. The basal area was 0.12-5.44 m2 ha-1 reported for saplings and 25.4-77.6 m2 ha-1 for trees. Regeneration of Sal was found good in Sal mixed dense forest followed by Sal open forest and Sal dense forest, respectively. Regeneration of Sal was assisted by the presence of associated tree species as well as the sufficient sunlight availability on ground due to adequate opening of canopy trees in Sal forest. Thus it is concluded that the density of tree canopy, sunlight availability and also associated tree species impacted the regeneration of Sal in the region.


2009 ◽  
Vol 8 (3) ◽  
pp. 257-267 ◽  
Author(s):  
Xu-xiao ZONG ◽  
Rebecca Ford ◽  
Robert R Redden ◽  
Jian-ping GUAN ◽  
Shu-min WANG

Author(s):  
Martin Lott ◽  
Philippe Roux ◽  
Stéphane Garambois ◽  
Philippe Guéguen ◽  
Andrea Colombi

Abstract The METAFORET experiment was designed to demonstrate that complex wave physics phenomena classically observed at the meso- and micro-scales in acoustics and in optics also apply at the geophysics scale. In particular, the experiment shows that a dense forest of trees can behave as a locally resonant metamaterial for seismic surface waves. The dense arrangement of trees anchored into the ground creates anomalous dispersion curves for surface waves, which highlight a large frequency band-gap around one resonant frequency of the trees, at ∼45 Hz. This demonstration is carried out through the deployment of a dense seismic array of ∼1000 autonomous geophones providing seismic recordings under vibrating source excitation at the transition between an open field and a forest. Additional geophysical equipment was deployed (e.g. ground-penetrating radar, velocimeters on trees) to provide essential complementary measurements. Insights and interpretations on the observed seismic wavefield, including the attenuation length, the intensity ratio between the field and the forest and the surface wave polarization, are validated with 2D numerical simulations of trees over a layered halfspace.


Sign in / Sign up

Export Citation Format

Share Document