scholarly journals The effect of air injection system on airlift pump performance

2020 ◽  
Vol 48 (4) ◽  
pp. 800-807
Author(s):  
Ekhlas Fayyadh ◽  
Nibras Mahdi ◽  
Ali Mohammed

In the current study, a novel design of an air injection system for an airlift pump was designed and tested. The pump has a circular cross-section and composed of three parts; suction pipe, injection system, and riser pipe. The riser pipe has a diameter of 31.7 mm and a length of 2 m. The performance of the pump was tested using different submergence ratios, ranging from 0.15 to 0.3, and the injected airflow rate was ranging from 1.65 kg/h to 13.32 kg/h. The results showed that both the airflow rate and the submergence ratio have a significant effect on the capacity and performance of the pump. Besides, it was found that the best range of pump efficiency was in the slug and slug-churn flow regimes. Moreover, the highest efficiency was at the most significant submergence ratio of 0.3. A reasonable enhancement in water flow rate was achieved using the current air injection design when compared with the conventional airlift pump injections system.

Author(s):  
Parviz Enany ◽  
Oleksandr Shevchenko ◽  
Carsten Drebenstedt

AbstractThis paper presents experimental studies on the optimization of air–water flow in an airlift pump. Airlift pumps use compressed gas to verticall transport liquids and slurries. Due to the lack of theoretical equations for designing and predicting flow regimes, experimental investigations must be carried out to find the best condition to operate an airlift pump at high efficiency. We used a new air injection system and different submergence ratios to evaluate the output of a simple pump for vertical displacement of water in an underground mine. The tests were carried out in a new device with 5.64 m height and 10.2 cm circular riser pipe. Three air-jacket pipes, at different gas flows in the range of 0.002–0.09 m3/s were investigated with eight submergence ratios. It was found that with the same air flow rate, the most efficient flow of water was achieved when an air jacket with 3 mm diameter holes was used with a submergence ratio between 0.6 and 0.75. In addition, a comparison of practical results with two theoretical models proposed by other investigators showed that neither was able to accurately predict airlift performance in air–water flow mode.


Author(s):  
Afshin Goharzadeh ◽  
Keegan Fernandes

This paper presents an experimental investigation on a modified airlift pump. Experiments were undertaken as a function of air-water flow rate for two submergence ratios (ε=0.58 and 0.74), and two different riser geometries (i) straight pipe with a constant inner diameter of 19 mm and (ii) enlarged pipe with a sudden expanded diameter of 19 to 32 mm. These transparent vertical pipes, of 1 m length, were submerged in a transparent rectangular tank (0.45×0.45×1.1 m3). The compressed air was injected into the vertical pipe to lift the water from the reservoir. The flow map regime is established for both configurations and compared with previous studies. The two phase air-water flow structure at the expansion region is experimentally characterized. Pipeline geometry is found to have a significant influence on the output water flow rate. Using high speed photography and electrical conductivity probes, new flow regimes, such as “slug to churn” and “annular to churn” flow, are observed and their influence on the output water flow rate and efficiency are discussed. These experimental results provide fundamental insights into the physics of modified airlift pump.


2013 ◽  
Vol 135 (3) ◽  
Author(s):  
A.-F. Mahrous

Airlift pump is a type of deep well pumps. Sometimes, it is used for removing water from mines or pumping slurry of sand and water or other solutions. The performance of airlift pump is affected by two sets of parameters; the geometrical and operational parameters. This work suggests a way to reduce the acceleration loss followed the expansion of air phase in the riser tube of the airlift pump, and consequently minimize transition to annular flow regime that is characterized by poor pumping performance. The method is to gradually enlarge the riser tube at some points after the air injection zone. Enlarging the riser tube can be considered as an alternative way in the cases where increasing airlift tube diameter is restricted by, e.g., the design of air injection system. A numerical model of the airlift pump based on the concept of momentum balance was developed and validated against available experimental data. Parametric predictive studies on model airlift pumps with different riser tube configurations, based on position, degree of expansion ratio and length of tube graduation section, were carried out. The numerical results showed that gradually enlarging the riser tube diameter at a position near the air injection zone would significantly improve the airlift pump discharge rate. Having the enlarged section set at a certain position and increasing the degree of expansion of the gradually enlarged tube section, the predicted results illustrated an improvement in the pump discharge rate but limited by the value of tube expansion ratio. The length of the enlarged tube section is shown not to considerably contribute to the improvement in the pump output rate when gradually enlarging the riser tube.


1992 ◽  
Vol 294 ◽  
Author(s):  
Ivars Neretnieks

ABSTRACTIn repositories for nuclear waste there are many processes that will be instrumental in damaging the canisters and releasing the nuclides. Based on experiences from studies of the performance of repositories and of an actual design, the major mechanisms influencing the integrity and performance of a repository are described and discussed. The paper addresses only conditions in crystalline rock repositories. The low water flow rate in fractures and channels plays a dominant role in limiting the interaction between water and waste. Molecular diffusion in the backfill and rock matrix, as well as in the mobile water, is an important transport process, but actually limits the exchange rate because diffusive transport is slow. Solubility limits of both waste matrix and of individual nuclides are also important. Complicating processes include alpha-radiolysis, which may change the water chemistry in the near-field. The sizes and locations of water flowpaths and damages in the canisters considerably influence the release rates. Uncertainties in data are large. Nevertheless the system is very robust in the sense that practically no reasonably conceivable assumptions or data will lead to large nuclide releases. Several natural analogues have been found to exhibit similarities with a waste repository and help to validate concepts and to increase our confidence that all major issues have been considered.


2020 ◽  
Vol 501 (2) ◽  
pp. 2250-2267
Author(s):  
J Crass ◽  
A Bechter ◽  
B Sands ◽  
D King ◽  
R Ketterer ◽  
...  

ABSTRACT Enabling efficient injection of light into single-mode fibres (SMFs) is a key requirement in realizing diffraction-limited astronomical spectroscopy on ground-based telescopes. SMF-fed spectrographs, facilitated by the use of adaptive optics (AO), offer distinct advantages over comparable seeing-limited designs, including higher spectral resolution within a compact and stable instrument volume, and a telescope independent spectrograph design. iLocater is an extremely precise radial velocity (EPRV) spectrograph being built for the Large Binocular Telescope (LBT). We have designed and built the front-end fibre injection system, or acquisition camera, for the SX (left) primary mirror of the LBT. The instrument was installed in 2019 and underwent on-sky commissioning and performance assessment. In this paper, we present the instrument requirements, acquisition camera design, as well as results from first-light measurements. Broad-band SMF coupling in excess of 35 per cent (absolute) in the near-infrared (0.97–1.31 ${\mu {\rm m}}$) was achieved across a range of target magnitudes, spectral types, and observing conditions. Successful demonstration of on-sky performance represents both a major milestone in the development of iLocater and in making efficient ground-based SMF-fed astronomical instruments a reality.


2019 ◽  
pp. 913-922
Author(s):  
Sagar Namdev Khurd ◽  
U. B. Andh ◽  
S. V. Kulkarni ◽  
Sandeep S. Wangikar ◽  
P. P. Kulkarni

Author(s):  
Sebastian Brehm ◽  
Felix Kern ◽  
Jonas Raub ◽  
Reinhard Niehuis

The Institute of Jet Propulsion at the University of the German Federal Armed Forces Munich has developed and patented a novel concept of air injection systems for active aerodynamic stabilization of turbo compressors. This so-called Ejector Injection System (EIS) utilizes the ejector effect to enhance efficiency and impact of the aerodynamic stabilization of the Larzac 04 two-spool turbofan engine’s LPC. The EIS design manufactured recently has been subject to CFD and experimental pre-investigations in which the expected ejector effect performance has been proven and the CFD set-up has been validated. Subsequently, optimization of the EIS ejector geometry comes into focus in order to enhance its performance. In this context, CFD parameter studies on the influence of in total 16 geometric and several aerodynamic parameters on the ejector effect are required. However, the existing and validated CFD set-up of the EIS comprises not only the mainly axisymmetric ejector geometry but also the highly complex 3D supply components upstream of the ejector geometry. This is hindering large scale CFD parameter studies due to the numerical effort required for these full 3D CFD simulations. Therefore, an approach to exploit the overall axissymmetry of the ejector geometry is presented within this paper which reduces the numerical effort required for CFD simulations of the EIS by more than 90%. This approach is verified by means of both experimental results as well as CFD predictions of the full 3D set-up. The comprehensive verification data set contains wall pressure distributions and the mass flow rates involved at various Aerodynamic Operating Points (AOP). Furthermore, limitations of the approach are revealed concerning its suitability e.g. to judge the response of the attached compressor of future EIS designs concerning aerodynamic stability or cyclic loading.


This paper represents the development and performance analysis of Solar operated Spraying system. Generally in the agricultural field, traditional conventional techniques like hand operated and fuel operated sprayer system for spraying pesticides have been used which is not eco-friendly, less labour productivity and low efficiency. These tools uses diesel as fuels which is harmful for the environment and also do increases the operating and maintenance cost. This motivates us to design and fabricate real-time product which is operated by solar energy. The main objective of this research is to design and fabricate the solar powered agricultural pesticide sprayer by considering parameters like desired spraying capacity, low weight, low cost, user-friendly nature, high operating time and for faster coverage of area. Mathematical models were developed after adopting suitable assumptions for calculation of power of the motor and sizing of battery, charge controller, solar panel required for spraying a known quantity of fluid. The parts required for the system had been selected by solving for known inputs values and considering their availability in the market. The maximum discharge at outlet of DC Pump, efficiency of pump had been calculated by taking different discharge at outlet of the pump. Further by using 12 Volt Led light, it can be operated in night mode and also is to reduce back pain of human being by keeping the tank in backside.


2018 ◽  
Vol 67 ◽  
pp. 01004
Author(s):  
Nadira Kamilia Permatasari ◽  
Widya Pangestika ◽  
Nelson Saksono

Tofu wastewater is one of the most dangerous source of environmental pollutants. It is known that the COD of tofu wastewater can reach 8000 mg/L. Contact Glow Discharge Electrolysis (CGDE) method is an effective method in degrading complex pollutants contained in tofu wastewater, due to its ability to produce large quantities of OH radicals. This study aims to test the ability of the CGDE method in degrading the tofu wastewater by the addition air injection. In this method, several variations were made to determine the optimal airflow rate and initial concentration of tofu wastewater. Tofu wastewater degradation reached 73% for 120 minutes, with the final value of COD is 425 mg/L and BOD is 447 mg/L. Maximum conditions are obtained by using airflow rate 2.5 lpm, temperature 50°C, and initial concentration of tofu wastewater is 2000 ppm. The addition of air injection with airflowrate 2.5 lpm is able to reduce energy consumption by 37%. The results show that CGDE with air injection has the potential to degrade pollution parameter in tofu wastewater.


Sign in / Sign up

Export Citation Format

Share Document