scholarly journals EFFECT OF THE EMBER ELEMENT IN INCREASING THE EFFICIENCY OF LPG STOVES

Author(s):  
Sudarno Sudarno ◽  
Sudjito Soeparman ◽  
Slamet Wahyudi ◽  
Agung Sugeng Widodo

The purpose of this study is to attempt to increase the efficiency of LPG stoves by using an ember element made of woven nickel wire arranged in layers. It is supposed that high-temperature embers can burn more fuel around the wire, thereby increasing the area of complete combustion. Testing was conducted by means of a Water Boiling Test (WBT) and the number of ember layers varied from one to four. It was found that the use of elements of fire without reflectors could increase efficiency by 8.32%, with the highest efficiency being with the use of a single layer ember element of the fire, of 61.71%. However, the use of elements of fire in the finned heat reflectors causes efficiency to decrease, as the pattern to put elements of fire interfere with the reflectivity. This means the heat reflection is blocked by the pattern and trapped between the reflector and pattern elements. As a result, the heat energy from the reflector reflection cannot be forwarded to the combustion zone. The test results also show that the temperature distribution from ember element use can increase the area of complete combustion.

2012 ◽  
Vol 204-208 ◽  
pp. 1174-1178 ◽  
Author(s):  
Yin Bai ◽  
Jian Lei Zhai ◽  
Yong Jiu Shi ◽  
Yuan Qing Wang

The elastic modulus of steel will decrease in case of high temperature which makes the reticulated shells easier to have the global instability phenomenon. In order to obtain the elasto-plastic stability bearing capacities for K6 single-layer reticulated shells [1], nonlinear finite analysis compete process was conducted by ANAYS software under on the two typical cases which include global non-uniform temperature distribution and localized high temperature. Based on the calculation formula for single-layer reticulated shells at ambient temperature, the calculation formula for elasto-plastic stability bearing capacity for K6 single-layer reticulated shells was obtained.


Author(s):  
Si-Hwa Jeong ◽  
Min-Gu Won ◽  
Nam-Su Huh ◽  
Yun-Jae Kim ◽  
Young-Jin Oh ◽  
...  

In this paper, the thermal stress characteristics of the pipe-in-pipe (PIP) system under high temperature condition are analyzed. The PIP is a type of pipe applied in sodium-cooled faster reactor (SFR) and has a different geometry from a single pipe. In particular, under the high temperature condition of the SFR, the high thermal stress is generated due to the temperature gradient occurring between the inner pipe and outer pipe. To investigate the thermal stress characteristics, three cases are considered according to geometry of the support. The fully constrained support and intermediate support are considered for case 1 and 2, respectively. For case 3, both supports are applied to the actual curved pipe. The finite element (FE) analyses are performed in two steps for each case. Firstly, the heat transfer analysis is carried out considering the thermal conduction, convection and radiation conditions. From the heat transfer analysis, the temperature distribution results in the piping system are obtained. Secondly, the structural analysis is performed considering the temperature distribution results and boundary conditions. Finally, the effects of the geometric characteristics on the thermal stress in the PIP system are analyzed.


1907 ◽  
Vol 45 (3) ◽  
pp. 547-554
Author(s):  
C. G. Knott

The experiments which form the subject of the present communication were carried out two years ago, and supplement results already published. A brief note of some of the results was read before the Society in June 1904, and was also read before the British Association Meeting at Cambridge in August of the same year.The previous paper discussed the effect of high temperature on the relation between electrical resistance and magnetization when the wire was magnetized longitudinally, that is, in the direction in which the resistance was measured.The present results have to do with the effect of high temperature on the relation between resistance and magnetization when the magnetization was transverse to the direction along which the resistance was measured.


2001 ◽  
Vol 357-360 ◽  
pp. 1241-1244 ◽  
Author(s):  
M. Däumling ◽  
C.N. Rasmussen ◽  
F. Hansen ◽  
D.W.A. Willén ◽  
O.E. Schuppach ◽  
...  

2011 ◽  
Vol 312-315 ◽  
pp. 583-588 ◽  
Author(s):  
Grzegorz Moskal ◽  
Lucjan Swadźba ◽  
Marek Hetmańczyk ◽  
Bartosz Witala

The paper presents test results and characterizes the structural stability of powders, which form a mixture of aluminium oxide (Al2O3) and gadolinium, based on rare earth zirconates. This mixture is provided to create thermal barrier coatings (TBCs) by spraying. The purpose of the tests was to determine the influence of temperature on reactions, occurring between those powders within a temperature range from 25°C to 1500°C, while such conditions were to simulate the conditions, which occur during creation of TBCs and they give an answer to the question concerning mutual reactivity of the powders. The requirements for new materials, provided to spray the TBCs, indicate the necessity to prepare the materials, which do not show tendency towards reactions with the Al2O3, formed during oxidation of Ni (Co) CrAlY, while this reaction is of type bond coat. The tests included differential scanning calorimetric (DSC) analysis and differential thermal analysis (DTA) of powder mixtures. Diffraction analysis was also performed before and after the tests have been finished. The DSC analysis results, obtained at a range of high temperature, did not show any thermal effects, which indicate a low level of mutual reactivity of the powders. However, the DTA analysis suggests presence of such effects at temperature close to 1300°C, and it indicates the necessity to verify exactly the obtained results. Results of the XRD measurement showed that after annealing process already at 1100°C the perovskite oxide of GdAlO3 was present.


2011 ◽  
Vol 311-313 ◽  
pp. 953-956
Author(s):  
Hao Chen ◽  
Gang Tao

In order to study dynamic response of metal, this paper makes use of theoretical formula to investigate changes of temperature and grain size on steel target after the penetration of copper jet based on data gathered from the experiments. Deformed target penetrated by copper jet could be divided into superplastic deformation zone and normal deformation zone according to the different microstructure. Temperature distribution of each deformation zones is in turn calculated by two constitutive equations. The results indicate that areas with high temperature concentrate on the narrow zone near the penetrated channel. Then, the calculation of grain size conforms to the observation. It is obviously proven that the method used in this paper is trustworthy for calculating the changes of temperature and grain size of target caused by penetration.


2015 ◽  
Vol 830-831 ◽  
pp. 191-194
Author(s):  
M. Venkateswara Rao

Conventional tensile test methods are used for service exposed high temperature boiler tubes to evaluate the deterioration in mechanical properties such as tensile strength, yield strength and percentage elongation. The mechanical properties are required to be evaluated periodically as the boiler components undergo material degradation due to aging phenomena. The aging phenomena occurs due to continuous exposure of tubes to high temperature & pressure steam prevailing inside the tubes and high temperature exposure to corrosive combustible gases from the external surfaces within the boiler.A recent developed new technique called small punch testing has been used to evaluate the tensile properties of SA 213T22 grade steel predominantly exists in super-heater and re-heater sections of boiler. The small punch tests have been carried out on the miniature disk shaped specimens of diameter of 8.0 mm and 0.5 mm thickness extracted from both the new and service exposed tubes. Conventional uniaxial tensile tests on standard specimens from the same tube material have also been performed for comparison. The service exposed tubes showed considerable loss in mechanical properties in both the conventional and small punch test results. Correlations of tensile properties have been obtained based on the comparative analysis of both small punch and uniaxial tensile test results. Further, the study showed that an appropriate empirical relation could be generated for new and service exposed materials between both the techniques. Conventional test methods require large quantity of material removal for test samples from in-service components whereas small punch test method needs only a miniature sample extraction. This small punch test technique could also be extended to evaluate the thicker section boiler components such as pipelines and headers in the boiler as a part of remaining life assessment study. Also this technique could be a useful tool to any metallic component where large quantity of sample removal may be difficult or may not be feasible.


2021 ◽  
pp. 014459872199800
Author(s):  
Xiaolong Wang ◽  
Wenke Zhang ◽  
Qingqing Li ◽  
Zhenqiang Wei ◽  
Wenjun Lei ◽  
...  

Radiant floor cooling systems are increasingly used in practice. The temperature distribution on the floor surface and inside the floor structure, especially the minimum and average temperature of floor surface, determines the thermal performance of radiant floor systems. A good temperature distribution of the floor structure is very important to prevent occupant discomfort and avoid possible condensation in summer cooling. In this study, based on the heat transfer model of the single-layer homogeneous floor structure when there is no internal heat radiation in the room, this paper proposes a heat transfer model of single-layer floor radiant cooling systems when the room has internal heat radiation. Using separation variable methods, an analytical solution was developed to estimate temperature distribution of typical radiant floor cooling systems with internal heat radiation, which can be used to calculate the minimum temperature and the average temperature of typical composite floor structure. The analytical solution was validated by experiments. The values of the measured experiments are in a good agreement with the calculations. The absolute error between the calculated and the measured floor surface temperatures was within 0.45°C. The maximum relative error was within 2.31%. Prove that this model can be accepted. The proposed method can be utilized to calculate the cooling capacity of a typical multi-layer composite floor and will be developed in the future study for design of a typical radiant floor cooling system.


Sign in / Sign up

Export Citation Format

Share Document