Links to Literature: Using Representations to Explore Perimeter and Area

2001 ◽  
Vol 8 (1) ◽  
pp. 52-59
Author(s):  
Patricia S. Moyer

In an elementary school classroom, as in real life, the lines between the content areas should be blurred, particularly between mathematical problem solving and mathematical situations contextualized in good literature. For that reason, I always look for interesting books about mathematical situations. Why use children's literature to teach mathematics? A good story often places mathematical problems in the context of familiar situations and is similar to, yet a much more elaborate version of, mathematical word problems. Assertions that children's inability to solve word problems results from their inability to read or to compute effectively simply are not true. The problem is that children do not know how to choose the correct operation or sequence of operations to solve the problem. To solve a problem situation presented in words, children need to be able to connect computational processes with appropriate calculations. Their difficulties lie in the fact that children simply do not understand the mathematics well enough conceptually to make the connection with the problem- solving situation. Using books with authentic problem situations may help children see that learning computation serves a real-life purpose.

ZDM ◽  
2021 ◽  
Author(s):  
Gemma Carotenuto ◽  
Pietro Di Martino ◽  
Marta Lemmi

AbstractResearch on mathematical problem solving has a long tradition: retracing its fascinating story sheds light on its intricacies and, therefore, on its needs. When we analyze this impressive literature, a critical issue emerges clearly, namely, the presence of words and expressions having many and sometimes opposite meanings. Significant examples are the terms ‘realistic’ and ‘modeling’ associated with word problems in school. Understanding how these terms are used is important in research, because this issue relates to the design of several studies and to the interpretation of a large number of phenomena, such as the well-known phenomenon of students’ suspension of sense making when they solve mathematical problems. In order to deepen our understanding of this phenomenon, we describe a large empirical and qualitative study focused on the effects of variations in the presentation (text, picture, format) of word problems on students’ approaches to these problems. The results of our study show that the phenomenon of suspension of sense making is more precisely a phenomenon of activation of alternative kinds of sense making: the different kinds of active sense making appear to be strongly affected by the presentation of the word problem.


Author(s):  
Aline Dorimana ◽  
Alphonse Uworwabayeho ◽  
Gabriel Nizeyimana

This study explored teachers' beliefs about mathematical problem-solving. It involved 36 identified teachers of Kayonza District in Rwanda via an explanatory mixed-method approach. The findings indicate that most teachers show a positive attitude towards advancing problem-solving in the mathematics classroom. However, they expose different views on its implementation. Role of problem-solving, Mathematical problems, and Problem-solving in Mathematics were identified as main themes. Problem-solving was highlighted as an approach that helps teachers use time adequately and helps students develop critical thinking and reasoning that enable them to face challenges in real life. The study recommends teacher professional development initiatives with their capacity to bring problem-solving to standard.


1987 ◽  
Vol 65 (3) ◽  
pp. 925-926 ◽  
Author(s):  
Hersholt C. Waxman

The present study investigated whether there were significant differences between boys and girls on the problem-solving strategies they report using during mathematical word problems. The Problem-solving Strategy Survey was administered to 210 boys and 201 girls in Grades 3, 4, and 5 from several public elementary schools. Boys reported making or constructing a model when solving mathematical problems significantly more often than girls, while girls reported using objects like coins and fingers and solving an easier problem within the problem first significantly more often than boys.


Author(s):  
Mahaletchumy Kumarasamy

Problem-solving is a mathematical skill that must be mastered by every student. This study uses the BUCK method to enhanced students skills in solving Fraction word problems for Year 5 pupil. This study was conducted on 4 respondents from a Tamil national school in Negeri Sembilan. Problem-solving questions are given and analyzed quantitatively. The findings showed that respondents did not understand the meanings and the questions and failed to determine the correct operation. The results of the study showed that BUCK method can improve the skill of pupils solving mathematical problems systematically.


2019 ◽  
Author(s):  
Corey Peltier ◽  
Mindy E Lingo ◽  
Faye Autry-Schreffler ◽  
Malarie Deardorff ◽  
Leslie Mathews ◽  
...  

Students identified with a specific learning disability (SLD) experience difficulty with mathematical problem solving. One specific intervention identified as a promising practice for students with a SLD is schema-based instruction (SBI). The current projects aimed to tests the efficacy of SBI under routine conditions. This extends prior literature by (a) using a teacher as the implementer, (b) allowing flexibility in the intervention protocol, (c) condensing the duration of intervention sessions, and (d) providing instruction in small group settings. In addition, we examined student problem solving performance on word problems requiring two-steps and combined schema structures. We used a multiple-probe design across three groups of fifth-grade participants (n = 7) receiving supplemental instruction in a resource room setting. Results indicated a functional relation between SBI and problem-solving performance for all students on simple structure word problems, with the magnitude of effects varying across cases. The NAP, Tau, and BC-SMD effect sizes were used to quantify effects. Implications were discussed in regard to systematic replication and conditions that may impact fidelity.


Author(s):  
Jenny Root ◽  
Alicia Saunders ◽  
Fred Spooner ◽  
Chelsi Brosh

The ability to solve mathematical problems related to purchasing and personal finance is important in promoting skill generalization and increasing independence for individuals with moderate intellectual disabilities (IDs). Using a multiple probe across participant design, this study investigated the effects of modified schema-based instruction (MSBI) on personal finance problem solving skills, purchasing an item on sale or leaving a tip, and using a calculator or iDevice (i.e., iPhone or iPad) for three middle school students diagnosed with a moderate ID. The results showed a functional relation between MSBI using a calculator on the participant’s ability to solve addition and subtraction personal finance word problems and generalize to iDevices. The findings of this study provide several implications for practice and offer suggestions for future research.


2021 ◽  
Vol 12 (2) ◽  
pp. 283-294
Author(s):  
A. Nurannisa F.A ◽  
Andi Muhammad Irfan Taufan Asfar ◽  
Andi Muhamad Iqbal Akbar Asfar ◽  
Adji Syaifullah

Mathematical logical intelligence is one of the skills that are needed in the 21st century related to mathematical problem-solving skills. The importance of this skill is not in line with the facts on the ground, where students are still weak in counting and using logic in problem solving. The purpose of this research is to improve students’ mathematical logical intelligence through the online-based integration of local wisdom of Sulapa Eppa Walasuji. Sulapa Eppa Walasuji is one of the Bugis-Makassar local wisdoms with a unique pattern, appropriate to be used as a medium for learning transformation of geometry. Through the integration of local wisdom, Sulapa Eppa Walasuji can create contextual mathematics learning, so that students can easily understand the material by connecting real-life concepts. This research includes experimental research with a quasi-experimental design of the nonequivalent control group design type. The research instrument used was a mathematical logical intelligence test consisting of five essay questions. The data analysis used is descriptive statistics with gain score and effect size testing. The results showed that the mathematical logical intelligence of experimental class students increased by 43.16 with the effective contribution of the r effect size being 0.910. This indicates that the online-based integration of Sulapa Eppa Walasuji can improve students’ mathematical logical intelligence. 


2019 ◽  
Vol 2 (2) ◽  
pp. 119
Author(s):  
Susiana Juseria Tambunan ◽  
Debora Suryani Sitinjak ◽  
Kimura Patar Tamba

<p>This research aims to build students’ abilities in mathematical problem-solving and to explain the uniqueness of the steps of realistic mathematic education in building the problem-solving abilities of a grade 11 (social science track) class in the study of probability at one of the schools in Kupang. The observation results found that every student was having difficulties to solving the mathematical problems, particularly the narrative questions. The research method is Kemmis and Taggart model of Classroom Action Research which was conducted in three cycles, from October 4 to November 3 with twenty-four students. Triangulation had been done to every instrument of variable. The data of mathematical problem-solving was obtained from the students by using test sheets, questionnaires, and student’s discussion sheets. Meanwhile, the data of realistic mathematic education’s variable was obtained from three sources: mentors, two colleagues, and students that were using test sheets, questionnaires, and student’s discussion sheets. The results showed that the fourteen-steps of Realistic Mathematic Education that had been done were able to build mathematical problem-solving abilities of the students. This was evidenced through the increase of three indicators of mathematical problem-solving in every cycle. The average increase of indicators of mathematical problem-solving of the grade 11 students from the first to the third cycle was 10%. Therefore, it can be concluded that the Realistic Mathematics Approach can build the ability of problem-solving of grade 11 students in a social science track studying probability at one of the schools in Kupang.</p><strong>BAHASA INDONESIA </strong><strong>ABSTRACT</strong>: Penelitian ini bertujuan untuk membangun kemampuan pemecahan masalah matematis siswa dan menjelaskan kekhasan langkah-langkah pendekatan matematika realistik untuk membangun kemampuan tersebut di salah satu sekolah di Kupang kelas XI IPS pada materi peluang topik kaidah pencacahan. Pada hasil pengamatan ditemukan bahwa setiap siswa kesulitan dalam memecahkan masalah matematis khususnya soal berbentuk cerita. Metode penelitian yang digunakan adalah Penelitian Tindakan Kelas model Kemmis dan Taggart yang berlangsung selama tiga siklus, yaitu 04 Oktober – 03 November kepada 24 orang siswa. Triangulasi dilakukan pada setiap instrumen variabel. Data variabel kemampuan pemecahan masalah matematis diperoleh dari siswa menggunakan lembar tes, lembar angket, dan lembar diskusi siswa. Sedangkan data variabel tingkat pelaksanaan pendekatan matematika realistik diperoleh dari tiga sumber, yaitu mentor, dua orang rekan sejawat, dan siswa menggunakan lembar observasi, lembar angket, dan lembar wawancara. Hasil penelitian menunjukkan bahwa keempat belas langkah-langkah pendekatan matematika realistik yang terlaksana dengan baik sekali mampu membangun kemampuan pemecahan masalah matematis setiap siswa kelas XI IPS di salah satu sekolah di Kupang. Hal ini dinyatakan melalui peningkatan ketiga indikator pemecahan masalah matematis di setiap siklus. Peningkatan rata-rata indikator pemecahan masalah matematis siswa kelas XI IPS dari siklus pertama sampai ketiga adalah sebesar 10%. Oleh karena itu, dapat disimpulkan bahwa pendekatan matematika realistik dapat membangun kemampuan pemecahan masalah matematis siswa kelas XI IPS di salah satu sekolah di Kupang pada materi peluang topik kaidah pencacahan.


Author(s):  
Hanifah Hanifah ◽  
Nanang Supriadi ◽  
Rany Widyastuti

Mathematical problem solving is a problem solving that uses mathematical problem solving. Students in the problem solving did not use the polya method so that students succeeded in difficulties. Educators still use conventional learning models so that students become bored, passive and reluctant to ask whether going forward working on the questions given by the educator, so that new learning models need to be applied. The e-learning learning model assisted with Edmodo learning media is an online presentation material on an Edmodo account using the mobile phone of students. PAM is the knowledge learned by students before getting learning material. This study aims to study the interaction of e-learning learning models assisted by Edmodo learning media to solve mathematical problems. This study is quantitative research. Data collection used with tests, interviews, collection and collection. The data analysis technique uses two-way anava test with cells that are not the same. From the results of the analysis, the influence of the e-learning learning model on mathematical problem solving abilities. It is necessary to question the high, medium, and low mathematical initial knowledge of Great mathematical problem solving ability, then there is no difference between assisted e-learning learning models edmodo, mathematical initial knowledge of mathematical problem solving abilities.


Gunahumas ◽  
2020 ◽  
Vol 2 (2) ◽  
pp. 357-386
Author(s):  
Yomi Chaeroni ◽  
Nizar Alam Hamdani ◽  
Akhmad Margana ◽  
Dian Rahadian

ABSTRAK Penelitian ini dilatarbelakangi oleh fakta bahwa kemampuan pemahaman dan kemampuan pemecahan masalah matematis merupakan salah satu kemampuan matematika tingkat tinggi yang harus dimiliki oleh setiap peserta didik. Selain itu kemampuan pemahaman dan kemampuan pemecahan masalah matematis jarang diterapkan dalam pembelajaran matematika di sekolah. Salah satu model pembelajaran yang dapat menjadi alternatif bagi pembelajaran matematika dan kemampuan pemahaman dan pemecahan masalah matematis adalah model pembelajaran IMPROVE. Penelitian ini bertujuan untuk mengetahui penerapan i-spring suite 8 pada model pembelajaran IMPROVE untuk meningkatkan kemampuan pemahaman dan pemecahan masalah matematis peserta didik. Metode penelitian yang digunakan adalah quasi eksperimen karena penelitian ini menggunakan satu kelas eksperimen dan satu kelas kontrol sebagai subyek penelitian. Cara pengambilan subjek penelitian yang digunakan adalah purposive sampling. Subjek penelitian dipilih sebanyak dua kelas dari keseluruhan peserta didik kelas XI SMA Muhammadiyah Banyuresmi tahun pelajaran 2019/2020. Dari hasil penelitian dan perhitungan statistik diperoleh kesimpulan: 1) Terdapat peningkatan kemampuan pemahaman dan pemecahan masalah matematis peserta didik yang dalam pembelajarannya menggunakan i-spring suite 8 pada model pembelajaran IMPROVE; 2) Terdapat peningkatan kemampuan pemahaman dan pemecahan masalah matematis peserta didik yang dalam pembelajarannya menggunakan model pembelajaran konvensional/direct instruction; 3) Terdapat peningkatan kemampuan pemahaman dan pemecahan masalah matematis peserta didik yang dalam pembelajarannya menggunakan i-spring suite 8 pada model pembelajaran IMPROVE dibandingkan dengan peserta didik yang dalam pembelajarannya menggunakan model pembelajaran konvensional/direct instruction; 4) Tidak terdapat perbedaan kemampuan pemahaman dan pemecahan masalah matematis peserta didik yang dalam pembelajarannya menggunakan i-spring suite 8 pada model pembelajaran IMPROVE dan yang menggunakan model konvensional/direct instruction.Kata kunci: Kemampuan Pemahaman Matematis, Kemampuan Pemecahan Masalah Matematis, Model IMPROVEABSTRACT This research is motivated by the fact that the ability to understand and the ability to solve mathematical problems is one of the high-level mathematical abilities that must be possessed by every student. In addition, the ability to understand and the ability to solve mathematical problems are rarely applied in mathematics learning in schools. One learning model that can be an alternative for mathematics learning and mathematical understanding and problem solving abilities is the IMPROVE learning model. This study aims to determine the application of ispring suite 8 on the IMPROVE learning model to improve students' mathematical understanding and problem solving abilities. The research method used is quasi-experimental because this study uses one experimental class and one control class as research subjects. The method of taking the research subject used was purposive sampling. The research subjects were selected as many as two classes from all grade XI students of SMA Muhammadiyah Banyuresmi in the 2019/2020 academic year. From the results of research and statistical calculations conclusions: 1) There is an increase in the ability to understand and solve mathematical problems of students who in learning use the i-spring suite 8 on the IMPROVE learning model; 2) There is an increase in the ability of understanding and solving mathematical problems of students who in learning use conventional learning models / direct instruction; 3) There is an increase in students' mathematical understanding and problem solving abilities in learning using i-spring suite 8 in the IMPROVE learning model compared to students in learning using conventional learning models / direct instruction; 4) There is no difference in the ability to understand and solve mathematical problems of students who in learning use the i-spring suite 8 on the IMPROVE learning model and who use the conventional model / direct instruction.Keywords: Mathematical Understanding Ability, Mathematical Problem Solving Ability, IMPROVE Model


Sign in / Sign up

Export Citation Format

Share Document