Experimental and Numerical Investigation of Green Water Occurrence for KRISO Container Ship

2020 ◽  
pp. 1-19
Author(s):  
Kudupudi Ravindra Babu ◽  
Sri Vinay Krishna Rayudu Nelli ◽  
Anirban Bhattacharyya ◽  
Ranadev Datta

The occurrence of green water on the deck of Korea Research Institute of Ships & Ocean Engineering (KRISO) container ship is investigated using model test experiments and a fully coupled impulse response function (IRF)-computational fluid dynamics (CFD)-based numerical approach. In the experimental study, green water pressure over the deck and superstructure is investigated for different regular head wave conditions (wavelength/ship length ratio: .8-1.5) and vessel speeds (Froude number: .055-.166). The impact pressure on the deck is found to be highest at a wavelength/ship length ratio of 1.2 and increases drastically with the increase in Froude number. The variation of green water pressure with wave steepness is linear for points on the forward deck and quadratic for the superstructure. In the second part, a coupled IRF-CFD-based numerical method is developed in which the global hydrodynamic forces such as radiation-diffraction and Froude-Krylov force are computed using a potential flow solver, whereas the local pressure due to the shipping water impact is computed using CFD and added as an external force. Comparisons of vessel motions and green water pressures with experiments indicate that the coupled IRF-CFD method can be a robust and efficient tool to predict shipping water loads on ships.

Author(s):  
Hui Li ◽  
Bao-Li Deng ◽  
Shu-Zheng Sun ◽  
Wen-Lei Du ◽  
Hao-Dong Zhao

This paper presents the results of an experimental investigation of green water loads on a wave-piercing tumblehome ship. A water tank experiment was carried out in head regular waves by using a self-propelling segmented ship model. Wave probes and pressure sensors were arranged on the bow deck along the longitudinal and transverse directions. The height of water and the impact pressure on the deck were measured and their distributions in different wave conditions studied. The motion of the water flowing on the deck was recorded by a high-speed video system. Based on the experimental results, it was found that the green water is more serious with the increase of incident wave height and ship speed. The bow shape has little effects on the occurrence of green water, but it influences the green water loads to some extent. The distribution of green water pressure is different from that of green water height due to the strong nonlinearity of green water pressure.


Author(s):  
Lei Yue ◽  
Zhiguo Zhang ◽  
Dakui Feng

The so-called numerical wave tank is to use a mathematical model to simulate the process of making waves and interaction between waves and structures. Shipping water occurs when the wave height exceeds the deck level of a floating vessel. A large amount of seawater flows down onto the deck. It damages deck equipment and causes even submergence. The water on deck is called “Green Water”, and it is dangerous for ships. It is of great significance to analyze and simulate wave and green water phenomenon. This paper developed a three-dimensional numerical wave tank and presented VOF method to deal with the movement with free surface, and then simulated process of wave generation numerically. A two-dimensional numerical simulation of the green water phenomenon of a hull placed in regular wave was performed. The process of wave running up and wave deforming were obtained. The results show that the present numerical scheme and methods can be used to simulate process of wave generation and phenomenon of green water on deck, and to predict and analyze the impact forces between waves and structures due to green water.


2014 ◽  
Vol 70 (11) ◽  
pp. 1825-1837 ◽  
Author(s):  
K. De Vleeschauwer ◽  
J. Weustenraad ◽  
C. Nolf ◽  
V. Wolfs ◽  
B. De Meulder ◽  
...  

Urbanization and climate change trends put strong pressures on urban water systems. Temporal variations in rainfall, runoff and water availability increase, and need to be compensated for by innovative adaptation strategies. One of these is stormwater retention and infiltration in open and/or green spaces in the city (blue–green water integration). This study evaluated the efficiency of three adaptation strategies for the city of Turnhout in Belgium, namely source control as a result of blue–green water integration, retention basins located downstream of the stormwater sewers, and end-of-pipe solutions based on river flood control reservoirs. The efficiency of these options is quantified by the reduction in sewer and river flood frequencies and volumes, and sewer overflow volumes. This is done by means of long-term simulations (100-year rainfall simulations) using an integrated conceptual sewer–river model calibrated to full hydrodynamic sewer and river models. Results show that combining open, green zones in the city with stormwater retention and infiltration for only 1% of the total city runoff area would lead to a 30 to 50% reduction in sewer flood volumes for return periods in the range 10–100 years. This is due to the additional surface storage and infiltration and consequent reduction in urban runoff. However, the impact of this source control option on downstream river floods is limited. Stormwater retention downstream of the sewer system gives a strong reduction in peak discharges to the receiving river. However due to the difference in response time between the sewer and river systems, this does not lead to a strong reduction in river flood frequency. The paper shows the importance of improving the interface between urban design and water management, and between sewer and river flood management.


2011 ◽  
Vol 8 (3-4) ◽  
pp. 309-321 ◽  
Author(s):  
S. K. Pandey ◽  
Dharmendra Tripathi

This model investigates particularly the impact of an integral and a non-integral number of waves on the swallowing of food stuff such as jelly, tomato puree, soup, concentrated fruits juices and honey transported peristaltically through the oesophagus. The fluid is considered as a Casson fluid. Emphasis is on the study of the dependence of local pressure distribution on space and time. Mechanical efficiency, reflux limit and trapping are also discussed. The effect of Casson fluid vis-à-vis Newtonian fluid is investigated analytically and numerically too. The result is physically interpreted as that the oesophagus makes more efforts to swallow fluids with higher concentration. It is observed that the pressure is uniformly distributed when an integral number of waves is there in the oesophagus; but it is non-uniform when a non-integral number of waves is present therein. It is further observed that as the plug flow region widens, the pressure difference increases, which indicates that the averaged flow rate will reduce for a Casson fluid. It is also concluded that Casson fluids are more prone to reflux.


2009 ◽  
Vol 53 (01) ◽  
pp. 7-18
Author(s):  
Renchuan Zhu ◽  
Guoping Miao ◽  
Zhaowei Lin

Green water loads on sailing ships or floating structures occur when an incoming wave significantly exceeds freeboard and water runs onto the deck. In this paper, numerical programs developed based on the platform of the commercial software Fluent were used to numerically model green water occurrence on floating structures exposed to waves. The phenomena of the fixed floating production, storage, and offloading unit (FPSO) model and oscillating vessels in head waves have been simulated and analyzed. For the oscillating floating body case, a combination idea is presented in which the motions of the FPSO are calculated by the potential theory in advance and computional fluid dynamics (CFD) tools are used to investigate the details of green water. A technique of dynamic mesh is introduced in a numerical wave tank to simulate the green water occurrence on the oscillating vessels in waves. Numerical results agree well with the corresponding experimental results regarding the wave heights on deck and green water impact loads; the two-dimensional fixed FPSO model case conducted by Greco (2001), and the three-dimensional oscillating vessel cases by Buchner (2002), respectively. The research presented here indicates that the present numerical scheme and method can be used to actually simulate the phenomenon of green water on deck, and to predict and analyze the impact forces on floating structures due to green water. This can be of great significance in further guiding ship design and optimization, especially in the strength design of ship bows.


2020 ◽  
Vol 64 (01) ◽  
pp. 61-80
Author(s):  
Ping-Chen Wu ◽  
Md. Alfaz Hossain ◽  
Naoki Kawakami ◽  
Kento Tamaki ◽  
Htike Aung Kyaw ◽  
...  

Ship motion responses and added resistance in waves have been predicted by a wide variety of computational tools. However, validation of the computational flow field still remains a challenge. In the previous study, the flow field around the Korea Research Institute for Ships and Ocean Engineering (KRISO) Very Large Crude-oil Carrier 2 tanker model with and without propeller condition and without rudder condition was measured by the authors, as well as the resistance and self-propulsion tests in waves. In this study, the KRISO container ship model appended with a rudder was used for the higher Froude number .26 and smaller block coefficient .65. The experiments were conducted in the Osaka University towing tank using a 3.2-m-long ship model for resistance and self-propulsion tests in waves. Viscous flow simulation was performed by using CFDShip-Iowa. The wave conditions proposed in Computational Fluid Dynamics (CFD) Workshop 2015 were considered, i.e., the wave-ship length ratio λ/L = .65, .85, 1.15, 1.37, 1.95, and calm water. The objective of this study was to validate CFD results by Experimental Fluid Dynamics (EFD) data for ship vertical motions, added resistance, and wake flow field. The detailed flow field for nominal wake and self-propulsion condition will be analyzed for λ/L = .65, 1.15, 1.37, and calm water. Furthermore, bilge vortex movement and boundary layer development on propeller plane, propeller thrust, and wake factor oscillation in waves will be studied.


2021 ◽  
Author(s):  
Paul Halas ◽  
Jeremie Mouginot ◽  
Basile de Fleurian ◽  
Petra Langebroek

<div> <p>Ice losses from the Greenland Ice Sheet have been increasing in the last two decades, leading to a larger contribution to the global sea level rise. Roughly 40% of the contribution comes from ice-sheet dynamics, mainly regulated by basal sliding. The sliding component of glaciers has been observed to be strongly related to surface melting, as water can eventually reach the bed and impact the subglacial water pressure, affecting the basal sliding.  </p> </div><div> <p>The link between ice velocities and surface melt on multi-annual time scale is still not totally understood even though it is of major importance with expected increasing surface melting. Several studies showed some correlation between an increase in surface melt and a slowdown in velocities, but there is no consensus on those trends. Moreover those investigations only presented results in a limited area over Southwest Greenland.  </p> </div><div> <p>Here we present the ice motion over many land-terminating glaciers on the Greenland Ice Sheet for the period 2000 - 2020. This type of glacier is ideal for studying processes at the interface between the bed and the ice since they are exempted from interactions with the sea while still being relevant for all glaciers since they share the same basal friction laws. The velocity data was obtained using optical Landsat 7 & 8 imagery and feature-tracking algorithm. We attached importance keeping the starting date of our image pairs similar, and avoided stacking pairs starting before and after melt seasons, resulting in multiple velocity products for each year.  </p> </div><div> <p>Our results show similar velocity trends for previously studied areas with a slowdown until 2012 followed by an acceleration. This trend however does not seem to be observed on the whole ice sheet and is probably specific to this region’s climate forcing. </p> </div><div> <p>Moreover comparison between ice velocities from different parts of Greenland allows us to observe the impact of different climatic trends on ice dynamics.</p> </div>


2021 ◽  
Author(s):  
Matias Alonso ◽  
Jean Vaunat ◽  
Minh-Ngoc Vu ◽  
Antonio Gens

<p>Argillaceous rocks have great potential as possible geological host medium to store radioactive waste.  Andra is leading the design of a deep geological nuclear waste repository to be located in the Callovo-Oxfordian formation. In the framework of this project, excavations of large diameter galleries are contemplated to access and to store intermediate-level long-lived nuclear waste at repository main level. The closure of the repository will be realized by building sealing structures of expansive material.</p><p>The response of such structures is affected by several thermo-hydro-mechanical coupled processes taking place in the near and far field of the argillaceous formations. They include the formation of an excavation induced damaged zone around the galleries, the impact of the thermal load on host rock pressures and deformations, the long-term interaction with support concrete structural elements and the hydration and swelling of sealing materials. As a result, the study of their performance requires to perform simulation works of increasing complexity in terms of coupling equations, problem geometry and material behaviour. As well, challenging computational aspects, as the ones related to fractures creation and propagation, have to be considered for a representative analysis of the problem.</p><p>This work presents advanced large scale THM numerical models to provide keys about the response of the host rock around large diameter galleries during excavation and further thermal load as well as to analyse the performance of large diameter sealing structures. Particular features of the models include on one hand advanced constitutive laws to capture the development of the fractured zone around excavations, the behaviour of host rock/gallery support interfaces and the multi-scale response of bentonitic backfill. On the other hand, simulations consider geometries including constructive details of interest at decimetre scale within large discretization domain covering the whole formation stratigraphic column.</p><p>These challenging simulations provided qualitative and quantitative results on key aspects for natural and engineered barrier integrity, like extension of the damaged zone, impact of the thermal load and water pressure variations in the surrounding geological layers, duration of natural hydration phase, swelling pressure development and seals global stability.</p>


Author(s):  
Vedanth Srinivasan ◽  
Abraham J. Salazar ◽  
Kozo Saito

A new unsteady cavitation event tracking model is developed for predicting vapor dynamics occurring in multi-dimensional incompressible flows. The procedure solves incompressible Navier-Stokes equations for the liquid phase with an additional vapor transport equation for the vapor phase. The model tracks regions of liquid vaporization and applies compressibility effects to compute the local variation in speed of sound using the Homogeneous Equilibrium Model (HEM) assumptions. The variation of local cell density as a function of local pressure is used to construct the source term in the vapor fraction transport equation. The novel Cavitation-Induced-Momentum-Defect (CIMD) correction methodology developed in this study serves to account for cavitation inception and collapse events as relevant momentum source terms in the liquid phase momentum equations. Effects of vapor phase accumulation and diffusion are incorporated by detailed relaxation models. A modified RNG K-ε model, including the effects of compressibility in the vapor regions, is employed for modeling turbulence effects. Turbulent kinetic energy and dissipation contributions from the vapor regions are integrated with the liquid phase turbulence using relevant source terms. Numerical simulations are carried out using a Finite Volume methodology available within the framework of commercial CFD software code Fluent v.6.2. Simulation results are in qualitative agreement with experiments for unsteady cloud cavitation behavior in planar nozzle flows. Multitude of mechanisms such as formation of vortex cavities, vapor cluster shedding and coalescence, cavity pinch off are sharply captured by the supplemented vapor transport equation. Our results concur with previously established theories concerning sheet and cloud cavitation such as the re-entrant jet motion, cavity closure and the impact of adverse pressure gradients on cavitation dynamics.


2009 ◽  
Vol 11 (12) ◽  
pp. 791-798 ◽  
Author(s):  
Katie McLellan ◽  
Jerrold S. Petrofsky ◽  
Grenith Zimmerman ◽  
Everett Lohman ◽  
Michelle Prowse ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document