Research on the Installation and Alignment Method of Ship Multi-support Bearings Based on Different Confidence-Level Training Samples

2021 ◽  
pp. 1-9
Author(s):  
Yibin Deng ◽  
Xiaogang Yang ◽  
Shidong Fan ◽  
Hao Jin ◽  
Tao Su ◽  
...  

Because of the long propulsion shafting of special ships, the number of bearings is large and the number of measured bearing reaction data is small, which makes the installation of shafting difficult. To apply a small amount of measured data to the process of ship installation so as to accurately calculate the displacement value in the actual installation, this article proposes a method to calculate the displacement value of shafting intermediate bearing based on different confidence-level training samples. Taking a ro-ro ship as the research object, this research simulates the actual installation process, gives a higher confidence level to a small amount of measured data, constructs a new training sample set for machine learning, and finally obtains the genetic algorithm-backpropagation(GABP) neural network reflecting the actual installation process. At the same time, this research compares the accuracy between different confidence-level training sample shafting neural network and the shafting neural network without measured data, and the results show that the accuracy of shafting neural network with different confidence-level training samples is higher. Although as the adjustment times and the number of measured data increase, the network accuracy is significantly improved. After adding four measured data, the maximum error is within 1%, which can play a guiding role in the ship propulsion shafting alignment. Introduction With the rapid development of science and technology in the world, special ships such as engineering ships, official ships, and warships play an important role (Carrasco et al. 2020; Prill et al. 2020). Some ships of this special type are limited by various factors such as the stern line of engine room, hull stability, and operation requirements. They usually adopt the layout of middle or front engine room, which causes the propulsion system to have a longer shaft and the number of intermediate shafts and intermediate bearings exceeds two. This forms a so-called multisupport shafting (Lee et al. 2019) and it increases the difficulty of shafting alignment because of the force-coupling between the bearings (Lai et al. 2018a, 2018b). The process of the existing methods for calculating the displacement value is complex, and because of the influence of installation error and other factors, it is necessary to adjust the bearing height several times to make the bearing reaction meet the specification requirements(Kim et al. 2017, Ko et al. 2017). So how to predict the accurate displacement value of each intermediate bearing is the key to solving the problem of multisupport shafting intermediate bearing installation and calibration (Zhou et al. 2005, Xiao-fei et al. 2017).

2013 ◽  
Vol 333-335 ◽  
pp. 1659-1662
Author(s):  
Hai Wei Lu ◽  
Gang Wu ◽  
Chao Xiong

Fault diagnosis is very important to make the system return to normal operation quickly after an accident. This paper diagnoses the specific component failure and failure area when the real-time motion information of inputting protection and switch transferred to a trained artificial neural network model by building an artificial neural network diagnosis model of components such as transmission line, bus bar and transformer, training the artificial neural network through taking the failure rule which is found by the historic fault data as a training sample. This method has obvious advantages in the accuracy and speed of diagnosis compared with the previous artificial neural network and overcomes the shortcomings of the incompletion of training samples and not well dealing with the heuristic knowledge.


Author(s):  
Boqian Wu ◽  
Binwen Fan ◽  
Qiao Xiao ◽  
Tasleem Kausar ◽  
Wenfeng Wang

Accurate assessment of the breast cancer deterioration degree plays a crucial role in making medical plan, and the important basis for degree assessment is the number of mitoses in a given area of the pathological image. We utilized deep multi-scale fused fully convolutional neural network (MFF-CNN) combing with conditional random felid (CRF) to detect mitoses in hematoxylin and eosin stained histology image. Analyze the characteristics of mitotic detection ----scale invariance and sparsity, as well as the difficulties ---- small amount of data , inconsistent image staining and sample class unbalanced. Based on this, mitotic detection model is designed. In this paper, a tissue-based staining equalization method is used, and to establish an effective training sample set, we select training samples by using CNN. A mitotic detection model fusing multi-level and multi-scale features and context information was designed, and the corresponding training strategy was made to reduce over-fitting. As preliminarily validated on the public 2014 ICPR MITOSIS data, our method achieves a better performance in term of detection accuracy than ever recorded for this dataset.


2013 ◽  
Vol 694-697 ◽  
pp. 1110-1113
Author(s):  
Guang Hui Wang ◽  
Qiu Ping Ren

SOM neural network is of strong non-linearity mapping capacity and flexible network structure. Use this algorithm for training, form a scientific and rational classification of training samples, which draw the corresponding cause of the malfunction. Use a diesel engine system fault diagnosis model is established and the related parameters as the training sample, SOM network input layer neuron number parameter dimension 8, competition with 10 ×10 layer structure to establish the diagnosis model, through the simulation test, verify the validity and practicability of SOM neural network in fault diagnosis


2021 ◽  
Vol 27 (9) ◽  
pp. 461-469
Author(s):  
D. Yu. Nartsev ◽  
◽  
A. N. Gneushev ◽  

There is considered a problem of optimization methods comparing for the neural network regression task. Various optimization methods, such as stochastic gradient descent with momentum (SGDM), Adam and its modifications, AdamW and RAdam, were considered. To compare optimization method two regression task were formulated. Both tasks are connected with the preprocessing subtasks in the field of image analysis. The first considered task was the filtering blurred eye images on which confident recognition cannot be achieved. The training samples were generated by Gaussian blurring of the images. The blurring degree was estimated. The test and training sample for the assessment problem was formed on the basis of the BATH and CASSIA eye image databases. The second task was aligning faces in assessment image in face recognition systems. The training samples were generated by rotating face images, and rotation angle was estimated. To solve these tasks the direct estimation of parameters by solving the image regression problem by training neural network models is proposed. The adequate accuracy was acquired with all considered optimization methods for both tasks. Modifications of Adam algorithm show better results than original method. Both AdamW and RAdam methods reduced the error twice in comparison with Adam. The modification of the RAdam algorithm proposed in the work reduced the error by more than 1.5 times in comparison with the model trained by the original algorithm.


2021 ◽  
Vol 13 (13) ◽  
pp. 2441
Author(s):  
Fangyuan Liu ◽  
Hao Zhou ◽  
Weimin Huang ◽  
Yingwei Tian ◽  
Biyang Wen

With the rapid development of deep learning, the neural network becomes an efficient approach for eddy detection. However, previous work employs a traditional neural network with a focus on improving the detecting accuracy only using limited data under a single scenario. Meanwhile, the experience of detecting eddies from one experiment is not directly inherited from the detection model for other experiments. Therefore, a cross-domain submesoscale eddy detection neural network (CDEDNet) based on the high-frequency radar (HFR) data of the Nansan and Xuwen region is proposed in this paper. Firstly, a fundamental deep eddy detection architecture CDEDNet-0 is constructed with a fully convolutional network (FCN). Secondly, for solving the problem of insufficient labeled eddy data, an instance-based domain adaption method is adopted in CDEDNet-1 to increase training samples. Thirdly, for tackling the problem of unable to inherit previous detection experience, parameter-based transfer learning is incorporated in CDEDNet-2 for multi-scene eddy detection. The experiment results demonstrate CDEDNet-1 and CDEDNet-2 perform better than CDEDNet-0 in terms of accuracy. Meanwhile, eddy characteristics including eddy type, radius, occurring time, merger, and dynamic trajectory are analyzed for the Nansan and Xuwen regions.


2020 ◽  
Vol 39 (6) ◽  
pp. 8927-8935
Author(s):  
Bing Zheng ◽  
Dawei Yun ◽  
Yan Liang

Under the impact of COVID-19, research on behavior recognition are highly needed. In this paper, we combine the algorithm of self-adaptive coder and recurrent neural network to realize the research of behavior pattern recognition. At present, most of the research of human behavior recognition is focused on the video data, which is based on the video number. At the same time, due to the complexity of video image data, it is easy to violate personal privacy. With the rapid development of Internet of things technology, it has attracted the attention of a large number of experts and scholars. Researchers have tried to use many machine learning methods, such as random forest, support vector machine and other shallow learning methods, which perform well in the laboratory environment, but there is still a long way to go from practical application. In this paper, a recursive neural network algorithm based on long and short term memory (LSTM) is proposed to realize the recognition of behavior patterns, so as to improve the accuracy of human activity behavior recognition.


2021 ◽  
Vol 22 (1) ◽  
Author(s):  
Sangmin Jeon ◽  
Kyungmin Clara Lee

Abstract Objective The rapid development of artificial intelligence technologies for medical imaging has recently enabled automatic identification of anatomical landmarks on radiographs. The purpose of this study was to compare the results of an automatic cephalometric analysis using convolutional neural network with those obtained by a conventional cephalometric approach. Material and methods Cephalometric measurements of lateral cephalograms from 35 patients were obtained using an automatic program and a conventional program. Fifteen skeletal cephalometric measurements, nine dental cephalometric measurements, and two soft tissue cephalometric measurements obtained by the two methods were compared using paired t test and Bland-Altman plots. Results A comparison between the measurements from the automatic and conventional cephalometric analyses in terms of the paired t test confirmed that the saddle angle, linear measurements of maxillary incisor to NA line, and mandibular incisor to NB line showed statistically significant differences. All measurements were within the limits of agreement based on the Bland-Altman plots. The widths of limits of agreement were wider in dental measurements than those in the skeletal measurements. Conclusions Automatic cephalometric analyses based on convolutional neural network may offer clinically acceptable diagnostic performance. Careful consideration and additional manual adjustment are needed for dental measurements regarding tooth structures for higher accuracy and better performance.


2021 ◽  
Vol 2021 (4) ◽  
Author(s):  
Jack Y. Araz ◽  
Michael Spannowsky

Abstract Ensemble learning is a technique where multiple component learners are combined through a protocol. We propose an Ensemble Neural Network (ENN) that uses the combined latent-feature space of multiple neural network classifiers to improve the representation of the network hypothesis. We apply this approach to construct an ENN from Convolutional and Recurrent Neural Networks to discriminate top-quark jets from QCD jets. Such ENN provides the flexibility to improve the classification beyond simple prediction combining methods by linking different sources of error correlations, hence improving the representation between data and hypothesis. In combination with Bayesian techniques, we show that it can reduce epistemic uncertainties and the entropy of the hypothesis by simultaneously exploiting various kinematic correlations of the system, which also makes the network less susceptible to a limitation in training sample size.


Entropy ◽  
2021 ◽  
Vol 23 (7) ◽  
pp. 816
Author(s):  
Pingping Liu ◽  
Xiaokang Yang ◽  
Baixin Jin ◽  
Qiuzhan Zhou

Diabetic retinopathy (DR) is a common complication of diabetes mellitus (DM), and it is necessary to diagnose DR in the early stages of treatment. With the rapid development of convolutional neural networks in the field of image processing, deep learning methods have achieved great success in the field of medical image processing. Various medical lesion detection systems have been proposed to detect fundus lesions. At present, in the image classification process of diabetic retinopathy, the fine-grained properties of the diseased image are ignored and most of the retinopathy image data sets have serious uneven distribution problems, which limits the ability of the network to predict the classification of lesions to a large extent. We propose a new non-homologous bilinear pooling convolutional neural network model and combine it with the attention mechanism to further improve the network’s ability to extract specific features of the image. The experimental results show that, compared with the most popular fundus image classification models, the network model we proposed can greatly improve the prediction accuracy of the network while maintaining computational efficiency.


Author(s):  
Baiyu Peng ◽  
Qi Sun ◽  
Shengbo Eben Li ◽  
Dongsuk Kum ◽  
Yuming Yin ◽  
...  

AbstractRecent years have seen the rapid development of autonomous driving systems, which are typically designed in a hierarchical architecture or an end-to-end architecture. The hierarchical architecture is always complicated and hard to design, while the end-to-end architecture is more promising due to its simple structure. This paper puts forward an end-to-end autonomous driving method through a deep reinforcement learning algorithm Dueling Double Deep Q-Network, making it possible for the vehicle to learn end-to-end driving by itself. This paper firstly proposes an architecture for the end-to-end lane-keeping task. Unlike the traditional image-only state space, the presented state space is composed of both camera images and vehicle motion information. Then corresponding dueling neural network structure is introduced, which reduces the variance and improves sampling efficiency. Thirdly, the proposed method is applied to The Open Racing Car Simulator (TORCS) to demonstrate its great performance, where it surpasses human drivers. Finally, the saliency map of the neural network is visualized, which indicates the trained network drives by observing the lane lines. A video for the presented work is available online, https://youtu.be/76ciJmIHMD8 or https://v.youku.com/v_show/id_XNDM4ODc0MTM4NA==.html.


Sign in / Sign up

Export Citation Format

Share Document