A Study on the Application of Large Aluminum Hollow Extrusion Profiles to Ship Structures

1999 ◽  
Vol 15 (03) ◽  
pp. 179-190
Author(s):  
Seung II Seo ◽  
Kon Ho Son ◽  
Jae Hong Park

Aluminum is much useful material for high speed light crafts due to high strength and light weight. Large aluminum hollow extrusion profiles have another merits such as easy production of complicated shapes, reduction of welding and cutting lines, easy fabrication, high quality and labor cost-down. In this paper, a design method for aluminum hollow extrusion profiles was developed. Detailed finite element analysis was carried out to comprehend the structural behaviors of the hollow extrusion profiles subjected to normal pressure and compression. Simple formulas were proposed to analyze structural characteristics of the hollow extrusion profiles based on orthotropic plate theory and plate buckling theory. By comparison with the detailed analysis results, it was shown that simple formulas have good accuracy and efficiency. For practical application of the proposed simple formulas, optimization for reduction of weight under strength and production constraints was carried out and useful results were obtained.

2003 ◽  
Vol 125 (3) ◽  
pp. 274-276 ◽  
Author(s):  
R. R. de Swardt

During a recent study the residual strain/stress states through the walls of autofrettaged thick-walled high-strength steel cylinders were measured with neutron diffraction, Sachs boring and the compliance methods (Venter et al., 2000, J. Strain Anal. Eng. Des., 35, pp. 459–469). The Sachs boring method was developed prior to the advent of high speed computers. A new method for the data reduction was proposed. In order to verify the proposed procedure, the Sachs boring experimental method was simulated using finite element modeling. A residual stress field was introduced in the finite element method by elasto-plastic finite element analysis. The physical process of material removal by means of boring was simulated by step-by-step removal of elements from the finite element mesh. Both the traditional and newly proposed data reduction methods were used to calculate the residual stresses. The new data reduction method compares favorably with the traditional method.


1994 ◽  
Vol 10 (03) ◽  
pp. 146-155
Author(s):  
Nicholas Hatzidakis ◽  
Michael M. Bernitsas

Five alternative configurations of orthogonally stiffened plates are compared in order to identify the total cost optimum design including material and fabrication cost. Size optimization is performed within the limitations of structural component standardization for each of the five alternatives. The five optimal structures are then compared in terms of weight, fabrication, and total cost. Discrete sizing optimization is performed in this paper with two design variables, i.e., plate thickness and standardized beam cross section. Constraints are imposed on secondary and tertiary stresses computed by finite-element analysis (FEA); and on primary stresses to prevent plate buckling, stiffener tripping, and overall buckling. Confidence is established in the FEA results by making comparisons with FEA results using the effective breadth method and orthotropic plate theory. Producibility constraints dictated by standardization in shipyard practice are imposed as well.


2018 ◽  
Vol 786 ◽  
pp. 325-332 ◽  
Author(s):  
Terho Iso-Junno ◽  
Henri Niemi ◽  
Jarmo Mäkikangas ◽  
Kari Mäntyjärvi

To get all outstanding mechanical properties from ultra-high strength steel (UHSS) transformed into a lightweight and durable product, a comprehensive design process must be performed. The general DFMA method has been extended to get good design solutions with limited designer resources and within a relative short time period. Key steps of the extended DFMA design process are innovative brainstorming, the agile utilization of the optimization software, the heavy use of finite element analysis and fast design iteration. In this paper, the modified DFMA design method is described step by step. This method has been successfully used in the design process of the small lightweight rally car frame. The design process of the rally car is introduced as a case example of implementation of the extended DFMA.


Author(s):  
YeongJo Ju ◽  
Euysik Jeon

In this paper, the authors proposed an optimal design method for the strength design of infant pop-up seat frame combined with rear seats for infants, children, and adults, not removable booster seats or car seats. Frame strength design was performed using discrete material and thickness optimization (DMTO) method considering high strength steel (HSS) and advanced high strength steel (AHSS). Structural design using the Section 4 link mechanism was performed, and the weakness of the seat frame due to static load was confirmed through finite element analysis. An optimal design criterion was established by carrying out a case study to derive the limiting conditions according to static and dynamic loads. In consideration of these criteria, the optimal design according to d-optimal and discrete Latin-hypercube (DLH) was performed among the design of experiments (DOE). And the strength of the pop-up seat frame for infants according to each DOE was checked, and the strength optimization method was suggested by comparing the lightweight ratio.


2020 ◽  
Vol 14 (3) ◽  
pp. 7152-7169
Author(s):  
Okka Adiyanto ◽  
Park In Soo ◽  
Angga Senoaji Hermanto ◽  
Choi Won Sik

Broaching is a type of machining that uses a toothed tool similar to a saw. There are several types of broaching machines includes linear broaching machines and hydraulic machines.  Early linear broaching machines were driven mechanically by screws. However, hydraulic machines are faster, smoother in operation, and allow for high-speed steel broaches to be used. The purpose of this study is to an analysis of the vertical moving table type in the broaching machine. In this study, finite element analysis was carried out to examine the structural characteristics of broaching machine design. A model was created in CATIA software and analyzed with ANSYS to find the structural characteristics. The friction characteristic of PBT-40 material was also investigated. This material is recommended for guide rail surface lamination to reduce the friction coefficient and ram body wear. The simulation results provide information for the next step of development before physical prototype will be made. The maximum deformation of the workpiece table was 0.0517 mm on the positive Z-axis, and the maximum deformation on the pulling head device was 0.0598 mm on the negative Z-axis. The friction coefficients were between 0.013 and 0.047 in the sliding speed range of 0.06 to 0.34 m/s. The PBT-40 material has a wear coefficient of 1.604x10-13 m3/Nm according to the test. From the ANSYS friction simulation, it can be concluded that the PBT-40 material would not easily wear out during operation of the machine. It can be seen that small frictional stress occurred on the surface ranging from 8.273x10-5 to 8.381x10-5 MPa.


Author(s):  
Patrick S. Chang ◽  
David W. Rosen

Mesoscale truss structures are cellular structures that have support elements on the order of centimeters. These structures are engineered for high performance and have applications in industries where a high strength-to-weight ratio is desired. However, design of mesoscale truss structures currently requires some form of topological optimization that slows the design process. In previous research, a new Size, Matching and Scaling method was presented that eliminated the need for topological optimization by using a solid-body finite element analysis combined with a library of lattice configurations to generate topologies. When compared to topological optimization, results were favorable: design times were significantly reduced and performance results were comparable. In this paper, we present a modified Size Matching and Scaling design method that addresses key issues in the original method. Firstly, we outline an improve methodology. Secondly, we expand the library of configurations in order to improve lattice performance. Finally, we test the updated method and library against design examples.


Author(s):  
Marco W. M. Groenewegen ◽  
Milton E. Aguirre ◽  
Just L. Herder

Advanced robotic hand prostheses are praised for their impressive robust and fine grasping capabilities generated from intricate systems. Nevertheless, a high demand remains for grasping mechanisms that are mechanically simple, lightweight, and cheap to produce, easy to assemble and low in maintenance costs. This paper presents the design of a partially compliant underactuated finger to demonstrate the feasibility of achieving these rigorous requirements. The conceptual topology of the three phalanx finger is selected based on competitive analysis. Employing Pseudo-Rigid Body Model and Finite Element Analysis, a genetic optimization problem is formulated to minimize bending stresses within compliant flexures. The result is a fully functional demonstrator capable of flexing 180° in finger rotation. The prototype is fabricated from flexible high strength nylon and requires no assembly steps beyond 3D printing. Experimental testing verifies the design method with an acceptable error of < 5%.


2012 ◽  
Vol 490-495 ◽  
pp. 3023-3026
Author(s):  
Shao Zhong Jiang

The article aims at the cylinder head used in a high speed and higher-power diesel engine. In order to obtain the vibration characteristics and vibration frequency distributions. By means of modal analysis technology and finite element method (FEM), structural characteristics of the cylinder head using modal analysis is investigated. Firstly, a physical model of the cylinder head is built. Through the comparison of all the modal analysis results with different meshing densities, a tetrahedron ten-node element with length of 30mm is selected. Then finite element analysis of the model is taken by FEM software. The cylinder head’s modal parameters namely its natural frequency are calculated and its mode shapes are identified. The results can provide basis for the engine’s dynamic analysis and control of the diesel engine’s noise


2004 ◽  
Vol 471-472 ◽  
pp. 731-735 ◽  
Author(s):  
Guo Sheng Geng ◽  
Jiu Hua Xu ◽  
Ying Fei Ge ◽  
Yu Can Fu

A series of experiments were carried out on normal and high speed milling of a high strength titanium alloy (TA15). TA15 is a close alpha titanium alloy strengthened by solid solution with Al and other component. It is often used to make large structural parts in airplane and welded parts subject to heavy load. The tool life of several typical types of cutter commonly used in the milling of titanium alloy was studied by the orthogonal experiment design method. After multi-element regression analysis, the empirical equation of the tool life was stablished. The milling force and temperature were measured under different cutting conditions and tool wear status. The knowledge is useful to further understand and analysis of the cutting mechanism, machining quality and tool wear. The study on the machined surface integrity includes the following content: surface roughness, metallographic examination, work hardening and residual stress.


2014 ◽  
Vol 705 ◽  
pp. 122-125
Author(s):  
Zi Qing Meng ◽  
Ming Li

as the high-speed vehicle, motorcycle vibration has an important influence on driving security, comfort, and handling stability. Therefore, this article builds the finite element analysis model of vibration forecast and damping of the finished motorcycle based on the structural characteristics. The major contents include main part modeling, boundary condition, and the finite element model of the finished motorcycle. In the paper, we build the finite dynamic response equation through analyzing the dynamic response, and research the resonance from different directions that caused by the engine harmonic response. Moreover, this article provides the vibration attenuation plan of the motorcycle structural modification and proves the feasibility through the analog computation and experimental measurement.


Sign in / Sign up

Export Citation Format

Share Document