A Stochastic Theory for Nonlinear Ship Rolling in irregular Seas

1982 ◽  
Vol 26 (04) ◽  
pp. 229-245 ◽  
Author(s):  
J. B. Roberts

By a combination of averaging techniques with the theory of Markov processes, an approximate theory is developed for the rolling motion of a ship in beam waves. A simple expression is obtained for the distribution of the roll angle, and is tested by a comparison with a set of digital simulation estimates due to Dalzell. Good agreement is obtained over a realistic range of damping values.

1988 ◽  
Vol 61 (5) ◽  
pp. 812-827 ◽  
Author(s):  
Ramesh R. Rahalkar ◽  
Henry Tang

Abstract Based upon the Doi-Edwards theory, a simple expression has been obtained for zero-shear viscosity in terms of the plateau modulus and the crossover frequency. There are no adjustable parameters in the expression. The model is in very good agreement with the zero-shear viscosity values for linear polybutadienes, the typical discrepancy being ∼5–10%. If the model can be validated for other linear amorphous polymers, it may become possible to estimate the zero-shear viscosity by measuring a single Theological parameter (the crossover frequency).


2012 ◽  
Vol 2012 ◽  
pp. 1-22 ◽  
Author(s):  
S. L. Han ◽  
Takeshi Kinoshita

The nonlinear responses of ship rolling motion characterized by a roll damping moment are of great interest to naval architects and ocean engineers. Modeling and identification of the nonlinear damping moment are essential to incorporate the inherent nonlinearity in design, analysis, and control of a ship. A stochastic nonparametric approach for identification of nonlinear damping in the general mechanical system has been presented in the literature (Han and Kinoshits 2012). The method has been also applied to identification of the nonlinear damping moment of a ship at zero-forward speed (Han and Kinoshits 2013). In the presence of forward speed, however, the characteristic of roll damping moment of a ship is significantly changed due to the lift effect. In this paper, the stochastic inverse method is applied to identification of the nonlinear damping moment of a ship moving at nonzero-forward speed. The workability and validity of the method are verified with laboratory tests under controlled conditions. In experimental trials, two different types of ship rolling motion are considered: time-dependent transient motion and frequency-dependent periodic motion. It is shown that this method enables the inherent nonlinearity in damping moment to be estimated, including its reliability analysis.


2012 ◽  
Vol 126 (0) ◽  
pp. 277-282
Author(s):  
Heffry Veibert DIEN ◽  
Hiroki YASUMA ◽  
Yasuzumi FUJIMORI ◽  
Nobuo KIMURA

2018 ◽  
Vol 8 (2) ◽  
pp. 2731-2734
Author(s):  
P. K. D. N. Y. Putra ◽  
B. H. Iskandar ◽  
Y. Novita

Fishing vessels must have good stability and manoeuvrability. Hull with round bottom shape has a relatively poor rolling duration compared to other forms. Rolling duration reduction will improve the quality of stability of the ship which can be obtained with bilge keel installation. The objectives of this research are 1) to compare each parameter value on model ship by using bilge keel and 2) to determine the minimum ratio of bilge keel's length toward waterline length on the model ship which still has the ability to reduce rolling motion on the ship. The method used was giving treatment to model ship and observing its rolling motion with different lengths of bilge keel. Based on the result of the research, it can be concluded that bilge keel installation with some length ratio toward length of waterline has different results significantly, and bilge keel with length ratio 0.2 still have effective capability in reducing the rolling motion of the model ship.


2019 ◽  
Vol 2019 ◽  
pp. 1-14
Author(s):  
Yiming Li ◽  
Qin Shi ◽  
Duoyang Qiu

This paper describes a valuable linear yaw-roll tractor-semitrailer (TST) model with five-degree-of-freedom (DOFs) for control algorithm development when steering and braking. The key parameters, roll stiffness, axle cornering stiffness, and fifth-wheel stiffness, are identified by the genetic algorithm (GA) and multistage genetic algorithm (MGA) based on TruckSim outputs to increase the accuracy of the model. Thus, the key parameters of the simplified model can be modified according to the real-time vehicle states by online lookup table and interpolation. The TruckSim vehicle model is built referring to the real tractor (JAC-HFC4251P1K7E33ZTF6×2) and semitrailer (Luyue LHX9406) used in the field test later. The validation of the linear yaw-roll model of a tractor-semitrailer using field test data is presented in this paper. The field test in the performance testing ground is detailed, and the test data of roll angle, roll rate, and yaw rate are compared with the outputs of the model with maps of the key parameters. The results indicate that the error of the tractor’s roll angle and semitrailer’s roll angle between model data and test data is 1.13% and 1.24%, respectively. The roll rate and yaw rate of the tractor and semitrailer are also in good agreement.


2012 ◽  
Vol 26 (20) ◽  
pp. 1250117 ◽  
Author(s):  
L. T. VINH ◽  
N. V. HUY ◽  
P. K. HUNG

Molecular dynamics simulation is carried out for liquid SiO 2 at pressure ranged from zero to 30 GPa and by using BKS, Born–Mayer type and Morse–Stretch potentials. The constructed models reproduce well the experimental data in terms of mean coordination number, bond angle and pair radial distribution function. Furthermore, the density of all samples can be expressed by a linear function of fractions SiO x. It is found that the topology of units SiO x and linkages OSi y is unchanged upon compression although the liquid undergoes substantial change in its network structure. Consequently, the partial bond angle distribution for SiO x and OSi y is identical for all samples constructed by the same potential. This result allows to establishing a simple expression between total bond angle distribution (BAD) and fraction of SiO x and OSi y. The simulation shows a good agreement between the calculation and simulation results for both total O–Si–O and Si–O–Si BADs. This supports a technique to estimate amount of units SiO x and linkages OSi y on base of total Si–O–Si and O–Si–O BADs measured experimentally.


1990 ◽  
Vol 112 (1) ◽  
pp. 114-120 ◽  
Author(s):  
H. Ounis ◽  
G. Ahmadi

The equation of motion of a small spherical rigid particle in a turbulent flow field, including the Stokes drag, the Basset force, and the virtual mass effects, is considered. For an isotropic field, the lift force and the velocity gradient effects are neglected. Using the spectral method, responses of the resulting constant coefficient stochastic integrao-differential equation are studied. Analytical expressions relating the Lagrangian energy spectra of particle velocity to that of the fluid are developed and the results are used to evaluate various response statistics. Variations of the mean-square particle velocity and particle diffusivity with size, density ratio and response time are studied. The theoretical predictions are compared with the digital simulation results and the available data and good agreement is observed.


1968 ◽  
Vol 10 (3) ◽  
pp. 252-261 ◽  
Author(s):  
H. F. Black ◽  
A. J. McTernan

The parametrically excited vibrations of this system with assumed small asymmetry of the shaft cross-section are discussed in terms of the motion of a symmetric shaft having the mean cross-sectional flexibility, and the equations of motion are solved by the approximate perturbation-variation method of Hsu. Both features yield a more lucid appreciation of the motions expected than previous treatments: in particular, simpler explicit expressions for unstable bounds are given and forced vibrations due to mass unbalance are discussed with greater facility. The practically important case of nearly coincident natural frequencies is examined. The theoretical results are compared with analogue computation: good agreement with the approximate theory is found even for quite large shaft asymmetry.


1960 ◽  
Vol 82 (3) ◽  
pp. 246-252 ◽  
Author(s):  
A. G. MacDonald ◽  
S. Kobayashi ◽  
E. G. Thomsen

Several press forgings were made and it was found that the experimental mean forging pressures were in substantial agreement with values predicted by theoretical solutions based on an approximate theory. The forging processes were axial symmetric forging of disks between flat dies and forging in closed dies with several edge effects, such as overhanging flash, with and without flash-edge restriction. The materials were commerically pure aluminum and lead and were chosen because of their respective work-hardening and strain-rate effects at room temperature. It was found further that the local pressures measured in the forging were in good agreement with the theory, but that some local plastic flow tends to equalize the pressure in the body of the forging.


1976 ◽  
Vol 76 (4) ◽  
pp. 653-674 ◽  
Author(s):  
C. Samuel Martin ◽  
M. Padmanabhan ◽  
C. D. Ponce-Campos

The rolling motion of a sphere on a smooth plane boundary in a simple-harmonic water motion has been analytically and experimentally investigated. For spheres having specific gravities ranging from 0·09 to 15·18 the sphere motion was found to be sinusoidal for both low and high values of the period parameter defined by Keulegan & Carpenter. The knowledge of the sphere motion, and hence the resultant force, allowed the determination of inertia and drag coefficients from Fourier-averaging techniques. Experiments in the inertial range yielded an added-mass coefficient of 1·2, compared with 0·67 from inviscid theory for translating spheres. For values of the period parameter greater than 30 the drag coefficient is reported to be approximately 0·74.


Sign in / Sign up

Export Citation Format

Share Document