Solution of Cavitation Problems in Pumps by Means of Model Air Testing

1965 ◽  
Vol 2 (04) ◽  
pp. 422-430
Author(s):  
K. Pilarczyk ◽  
Vasil Rusak

This paper describes a case of rather unusual and severe cavitation in a double-suction centrifugal pump and the way the problem was corrected. The cavitation was demonstrated in a heavy erosion in the impeller blades while the performance of the pump did not show any signs of deterioration. The original design of the pump and the operating conditions were rather conventional with the available NPSH exceeding the recommended Hydraulic Institute Standard values. To solve this problem it was necessary to study, in detail, the velocity pattern at the impeller inlet. For this purpose, a wooden model of the pump suction nozzle was built and tested with air. A three-dimensional picture of the flow distribution in the impeller eye was obtained from this test indicating a considerable nonunlformlty in both the circumferential and the radial direction. This information led to the redesign of the impeller-inlet passage which ultimately eliminated the cavitation.

Author(s):  
M. H. Shojaee Fard ◽  
M. B. Ehghaghi ◽  
F. A. Boyaghchi

On the test bed of centrifugal pump, the centrifugal pump performance has been investigated using water and viscous oil as Newtonian fluids, whose kinematic viscosities are 1 × 10−6, 43 × 10−6 and 62 × 10−6 m2/s, respectively. Also, the finite volume method is used to model the three dimensional viscous fluids for different operating conditions. For these numerical simulations the SIMPLEC algorithm is used for solving governing equations of incompressible viscous/turbulent flows through the pump. The κ-ε turbulence model is adopted to describe the turbulent flow process. These simulations have been made with a steady calculation and using the multiple reference frame (MRF) technique to take into account the impeller-volute interaction. Numerical results are compared with the experimental characteristic curve for each viscous fluid. The data obtained allow the analysis of the main phenomena existent in this pump, such as: head, efficiency, power and pressure field changes for different operating conditions. Also, the correction factors for oils are obtained from the experimental for part loading (PL), best efficiency point (BEP) and over loading (OL) and the results are compared with proposed factors by American Hydraulic Institute (HIS) and Soviet Union (USSR). The comparisons between the numerical and experimental results show a good agreement.


Author(s):  
Shouqi Yuan ◽  
Jinfeng Zhang ◽  
Yue Tang ◽  
Jianping Yuan ◽  
Yuedeng Fu

The research on a centrifugal pump of low specific speed with splitter blades was carried out in recent years by our group, is systematically introduced in this paper. The design method is summarized also. At the beginning, based on the former L9(34) orthogonal test, Particle Imagine Velocity (PIV) tests and Computational Fluid Dynamics (CFD) simulations were carried out for several designs with different splitter blade length. Results show that for an impeller with splitter blades the “jet-wake” flow at the impeller outlet is improved, and the velocity distribution inside the impeller is more uniform. This explains that the impeller with splitter blades shows higher performance (especially in head and efficiency). Meanwhile, the numerical simulation results were compared with the test results, which confirm that, CFD technology can be used to observe inner flow distribution and forecast pump performance tendency. Later, a further L9(34) orthogonal test, which adopt the blade number as a new variable, was designed to explore the relationship between geometry parameters of splitter blade and pump performance, and corresponding CFD simulations for the flow field with volute were also done. From the test results the influence of the main design parameters on the hydraulic performance of a centrifugal pump and its reasonable value range are determined. The simulations forecasted pump performance show good consistency with that from tests at the rated point, and the simulated error at other flow rates were analyzed. Thirdly, in order to save research cost, numerical simulations were done for the full flow field including the cavity inside the volute and impeller. By analyzing the distribution law of blade torque and turbulent kinetic energy in the impeller, the value fetching principle for the splitter blade inlet diameter is presented as “the splitter blades torque should be positive”, and by analyzing the distribution of blades loading, the flow distribution rules and pump performance influenced by different splitter blades off-setting angles and inlet diameters were discovered. The disk friction loss, which consuming much energy in centrifugal pumps, was also forecasted at various operating conditions. The results were compared with that from empirical formulas, which show great accordance at the rated point, and the forecasted results at off-design points were analyzed also. Finally, the research results and the design method for the centrifugal pump with splitter blades, such as how to select splitter blade number, the off-setting angle, the inlet diameter and the deflection angle, were summarized.


Author(s):  
Yu-Liang Zhang ◽  
Zu-Chao Zhu ◽  
Hua-Shu Dou ◽  
Bao-Ling Cui ◽  
Yi Li ◽  
...  

AbstractTransient performance of pumps during transient operating periods, such as startup and stopping, has drawn more and more attentions recently due to the growing engineering needs. During the startup period of a pump, the performance parameters such as the flow rate and head would vary significantly in a broad range. Therefore, it is very difficult to accurately specify the unsteady boundary conditions for a pump alone to solve the transient flow in the absence of experimental results. The closed-loop pipe system including a centrifugal pump is built to accomplish the self-coupling calculation. The three-dimensional unsteady incompressible viscous flow inside the passage of the pump during startup period is numerically simulated using the dynamic mesh method. Simulation results show that there are tiny fluctuations in the flow rate even under stable operating conditions and this can be attributed to influence of the rotor–stator interaction. At the very beginning of the startup, the rising speed of the flow rate is lower than that of the rotational speed. It is also found that it is not suitable to predict the transient performance of pumps using the calculation method of quasi-steady flow, especially at the earlier period of the startup.


Author(s):  
Greg Epelbaum

Essex County Resource Recovery Facility (one of American Ref-Fuel Company’s six operating plants) has processing MSW capacity of approximately 2700 TPD and about 60% of this waste comes from NY City. Therefore, availability of the Essex plant boilers is very important not only for the company’s financial performance, it is also critical for the overall garbage disposal situation in the NYC Metropolitan area. One of the main factors affecting plant availability is boiler unscheduled downtime. The most recent data show that approximately 85% of Essex boilers unscheduled downtime is caused by tube failures, the majority of which occur in the superheater tubes. These tube failures are almost exclusively caused by fireside tube metal wastage driven by complicated mechanisms of corrosion in combination with local erosion. The corrosion is caused by chloride salts in the slag that deposits on the boiler tubes, coupled with high temperatures of flue gas going through the boiler. Corrosion rates are known to be very sensitive to flue gas temperature, tube metal temperature, heat flux, flow distribution. Erosion is typically caused by high velocities and flyash particle loading and trajectories. Extensive research revealed that in addition to this typical to WTE boiler corrosion/erosion mechanism, Essex boiler superheater tubes experienced a unique problem, resulting in tube overheating, accelerated wastage, and ultimate failure. In order to address this problem a modification plan was developed, which comprised several redesign options. A specially developed Three-dimensional Computational Fluid Dynamics (3-D CFD) model was utilized for comprehensive technical evaluation of the considered design options and for predicted performance simulations of the selected design at different operating conditions. The economical analysis, conducted in conjunction with the superheater redesign, provided financial justification for this project. The project has been recently executed, and field data collection is still in progress. Some preliminary data analyses have been performed. They have shown that the boiler performance after superheater modification is very close to the predicted target simulated by the CFD model. The plant and the company are already measuring financial benefits as a result of this project, the initial phase of which is presented in this paper.


2019 ◽  
Vol 141 (9) ◽  
Author(s):  
Amr A. Abdel Fatah ◽  
Mohammed A. Hassan ◽  
Mohamed Lotfy ◽  
Antoine S. Dimitri

The area of predictive maintenance (PM) has received growing research interest in the past few years. Diagnostic capabilities of PM technologies have increased due to advances made in sensor technologies, signal processing algorithms, and the rapid development of computational power and data handling algorithms. Conventional PM programs are mostly built around analyzing sensors' data collected from physical systems. Incorporating simulation data collected from digital models replicating the physical system with sensors' data can lead to more optimization for operation and maintenance. This paper demonstrates the role of using digital models in implementing effective condition monitoring on centrifugal pumps. Two digital models are used to study the dynamic performance of a centrifugal pump experiencing cavitation condition. The first model is a three-dimensional fully turbulent computational fluid dynamic (CFD) model. Based on the pressure distribution obtained from the CFD, a novel analytical pressure pulsation model is developed and used to simulate the exciting forces affecting the pump. The second digital model is a pump casing dynamic model which is used to predict the casing vibration response to exciting forces due to faulty operating conditions. Results obtained from the digital models are validated using an experimental test rig of a small centrifugal pump. Using this concept, a pump faulty operation can be simulated to provide complete understanding of the root cause of the fault. Additionally, digital models can be used to simulate different corrective actions that would restore the normal operation of the pump.


Author(s):  
Yu-liang Zhang ◽  
Zu-chao Zhu ◽  
Bao-ling Cui ◽  
Yi Li

To explore the transient characteristic of a centrifugal pump with the specific speed of 90 during startup period, the internal three-dimensional unsteady flow was solved by using CFD. Wherein to overcome the difficulty in implement of boundary conditions in numerical simulation, a closed-loop pipe system that includes a centrifugal pump was built to accomplish self-coupling calculation. The results show that at the very beginning of startup, flow rate rises slowly and non-dimensional head coefficient is much higher than quasi-steady value, the quasi-assumption can not be competent for predicting transient effect well. Moreover, the insufficient of energy conversion makes the evolvement of transient flow field lags behind that of quasi-steady flow field, i.e., kinetic energy can’t convert pressure energy in time during acceleration flow period. Rotor-stator interaction makes flow rate present slight fluctuation characteristic under stable operating conditions.


2019 ◽  
Vol 141 (9) ◽  
Author(s):  
Zheng-Chuan Zhang ◽  
Hong-Xun Chen ◽  
Zheng Ma ◽  
Jian-Wu He ◽  
Hui Liu ◽  
...  

Through numerical simulation and experiments analysis, it is indicated that the hydraulic and anticavitation performance of a centrifugal pump with twisted gap drainage blades based on flow control theory can be significantly improved under certain operating conditions. In order to introduce the technology of gap drainage to practical applications, we put forward the parameter formulas of the twisted gap drainage blade to design three-dimensional new type blade, which are also proved to be effective for enhancing the dynamic characteristics of the centrifugal pump. Furthermore, a practical centrifugal pump is redesigned to be a twisted gap drainage impeller with the same structure size as the original impeller, and the nonlinear hybrid Reynolds-averaged Navier–Stokes (RANS)/large eddy simulation (LES) method is employed to simulate the hydraulic dynamic characteristics. Numerical simulation results show that the hydraulic performance and dynamic characteristics of the redesigned impeller centrifugal pump are significantly enhanced. In experiments, the twisted gap drainage blades structure not only remarkably improves the hydraulic performance and the pressure pulsation characteristics of the centrifugal pump but also reduces the vibration intensity.


Author(s):  
Munther Y. Hermez ◽  
Badih Jawad ◽  
Liping Liu ◽  
Sabah Abro

An optimization of modified shrouded impeller with a curved spacer to suppress the unsteady flow recirculation was pursed. Centrifugal pumps are required to sustain a stable operation of the system they support under all operating conditions. Effect of minor geometrical modifications on the flow inside the three dimensional impeller passages are yet not fully understood, leading to costly trial and error approaches in the solution of instability problems. The idea of using a curved spacer to enhance the specified centrifugal impeller characteristics was validated. This modification with positioning the successful curved spacer prototype model at the impeller inlet section provided a wider pressure operation range at both low and high flow rates in a high-speed centrifugal pump type. Seven curved spacer models were numerically analyzed in combination with the same original closed type impeller. The research investigated the effects of each inlet curved spacer model on the impeller’s performance improvement. The flow field inside a centrifugal pump is known to be fully turbulent, three-dimensional, and unsteady associated with secondary flow recirculation and separation at the impeller’s inlet and exit section. The rotor-stator interaction mechanisms or other unsteady effects often influence the water flow. The present research addresses the problem of Net Positive Suction Head Required (NPSHR) increase due to flow recirculation at the impeller suction side. The three dimensional unsteady water flow inside different models were analyzed by using a 3-D Navier-Stokes code with a standard k-ε turbulence model. The computational domain consists of four main zones: inlet, impeller hub, vanes, and outlet. The measurements with test rig were conducted for the pump hydraulic performances and flow field in the impeller passages. The numerical simulation and experimental tests of prototype performance concluded: (1) Positioning a 3-D curved spacer at the impeller inlet section has a great impact on the centrifugal pump performance. (2) Favorite effects were achieved on impeller performance by separating the inlet flow region into two lanes. (3) The curved spacer resulted in improvement of closed impeller inlet static and total pressure values. (4) Q-ΔP-η data and flow structures in the impeller passages were analyzed.


2019 ◽  
Vol 71 (1) ◽  
pp. 109-118 ◽  
Author(s):  
Qiang Li ◽  
Shuo Zhang ◽  
Yujun Wang ◽  
Wei-Wei Xu ◽  
Zhenbo Wang

Purpose The growing demand of efficiency and economy has led to a dramatic increase of the operating speed of the journal bearing, with a higher temperature distribution. This paper aims to investigate the three-dimensional temperature distribution of journal bearings. Design/methodology/approach A thermo-hydrodynamic lubrication model of a journal bearing was established based on the full 3D CFD method. A two-sided wall was used to include the conjugate heat transfer effect. The temperature-dependent characteristics of lubrication and cavitation impact were also included. The simulation results well agreed with the experimental results. Based on this method, the three-dimensional temperature distribution was analyzed under different operating conditions. Findings The temperature distribution in the radial direction had a difference. An increase of speed and de-crease of inlet temperature promoted temperature differences in the higher temperature zone and the increasing temperature zone, respectively. However, the inlet pressure had less influence on these differences. The temperature distribution was basically the same at a lower bearing conductivity. As the conductivity increased, the radial temperature difference was increased. Originality/value The temperature distribution in the radial direction was found under different operating conditions, and the present research provides references to understand the three-dimensional temperature distribution of journal bearings.


2012 ◽  
Vol 134 (7) ◽  
Author(s):  
Ling Zhou ◽  
Weidong Shi ◽  
Weigang Lu ◽  
Bo Hu ◽  
Suqing Wu

In this paper, the design methodology of a new type of three-dimensional surface return diffuser (3DRD) is presented and described in detail. The main goal was to improve the hydrodynamic performance of the deep-well centrifugal pump (DCP). During this study, a two-stage DCP equipped with two different type diffusers was simulated employing the commercial computational fluid dynamics (CFD) software ANYSY-Fluent to solve the Navier-Stokes equations for three-dimensional steady flow. A sensitivity analysis of the numerical model was performed in order to impose appropriate parameters regarding grid elements number and turbulence model. The flow field and the static pressure distribution in the diffusers obtained by numerical simulation were analyzed, and the diffuser efficiency was defined to quantify the pressure conversion capability. The prototype experimental test results were acquired and compared with the data predicted from the numerical simulation, which showed that the performance of the pump with 3DRD is better than that of the traditional cylindrical return diffuser (CRD) under all operating conditions. The efficiency and single-stage head of the pump with 3DRD have been significantly improved compared with the standard DCP of the same class.


Sign in / Sign up

Export Citation Format

Share Document