Speeding up Hydrodynamic Simulations with a Parametric, Templated Approach

2021 ◽  
Author(s):  
Miles Patrick Wheeler

Hull Design engineers and hydrodynamicists need high fidelity tools to help understand the performance of the vessels they are designing. In the context of Computational Fluid Dynamics (CFD), it is often assumed these numerical simulations will take a long time to run and are cumbersome to the design process. Thus, high fidelity CFD tools are not yet seen as practical for a design environment. In the first part of the paper, a methodology for parameterizing all aspects of a simulation as dependent variables expressed in terms of length, speed, and displacement will be discussed. Then, a technique that can both speed up the runs and verify the uncertainly in the discretization will be shown. Lastly, by combining both methodologies, a demonstration on how to implement these techniques and speed up runs and get to high fidelity answers in a very fast and cost-effective manner will be showcased.

Author(s):  
W.J. Parker ◽  
N.M. Shadbolt ◽  
D.I. Gray

Three levels of planning can be distinguished in grassland farming: strategic, tactical and operational. The purpose of strategic planning is to achieve a sustainable long-term fit of the farm business with its physical, social and financial environment. In pastoral farming, this essentially means developing plans that maximise and best match pasture growth with animal demand, while generating sufficient income to maintain or enhance farm resources and improvements, and attain personal and financial goals. Strategic plans relate to the whole farm business and are focused on the means to achieve future needs. They should be routinely (at least annually) reviewed and monitored for effectiveness through key performance indicators (e.g., Economic Farm Surplus) that enable progress toward goals to be measured in a timely and cost-effective manner. Failure to link strategy with control is likely to result in unfulfilled plans. Keywords: management, performance


Nanomaterials ◽  
2021 ◽  
Vol 11 (1) ◽  
pp. 186
Author(s):  
Jia-Huan Qu ◽  
Karen Leirs ◽  
Remei Escudero ◽  
Žiga Strmšek ◽  
Roman Jerala ◽  
...  

To date, surface plasmon resonance (SPR) biosensors have been exploited in numerous different contexts while continuously pushing boundaries in terms of improved sensitivity, specificity, portability and reusability. The latter has attracted attention as a viable alternative to disposable biosensors, also offering prospects for rapid screening of biomolecules or biomolecular interactions. In this context here, we developed an approach to successfully regenerate a fiber-optic (FO)-SPR surface when utilizing cobalt (II)-nitrilotriacetic acid (NTA) surface chemistry. To achieve this, we tested multiple regeneration conditions that can disrupt the NTA chelate on a surface fully saturated with His6-tagged antibody fragments (scFv-33H1F7) over ten regeneration cycles. The best surface regeneration was obtained when combining 100 mM EDTA, 500 mM imidazole and 0.5% SDS at pH 8.0 for 1 min with shaking at 150 rpm followed by washing with 0.5 M NaOH for 3 min. The true versatility of the established approach was proven by regenerating the NTA surface for ten cycles with three other model system bioreceptors, different in their size and structure: His6-tagged SARS-CoV-2 spike fragment (receptor binding domain, RBD), a red fluorescent protein (RFP) and protein origami carrying 4 RFPs (Tet12SN-RRRR). Enabling the removal of His6-tagged bioreceptors from NTA surfaces in a fast and cost-effective manner can have broad applications, spanning from the development of biosensors and various biopharmaceutical analyses to the synthesis of novel biomaterials.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Kai Liu ◽  
Majid Allahyari ◽  
Jorge S. Salinas ◽  
Nadim Zgheib ◽  
S. Balachandar

AbstractHigh-fidelity simulations of coughs and sneezes that serve as virtual experiments are presented, and they offer an unprecedented opportunity to peer into the chaotic evolution of the resulting airborne droplet clouds. While larger droplets quickly fall-out of the cloud, smaller droplets evaporate rapidly. The non-volatiles remain airborne as droplet nuclei for a long time to be transported over long distances. The substantial variation observed between the different realizations has important social distancing implications, since probabilistic outlier-events do occur and may need to be taken into account when assessing the risk of contagion. Contrary to common expectations, we observe dry ambient conditions to increase by more than four times the number of airborne potentially virus-laden nuclei, as a result of reduced droplet fall-out through rapid evaporation. The simulation results are used to validate and calibrate a comprehensive multiphase theory, which is then used to predict the spread of airborne nuclei under a wide variety of ambient conditions.


2021 ◽  
Vol 3 (1) ◽  
Author(s):  
Yue Weng ◽  
Xi Zhang ◽  
Xiaohu Guo ◽  
Xianwei Zhang ◽  
Yutong Lu ◽  
...  

AbstractIn unstructured finite volume method, loop on different mesh components such as cells, faces, nodes, etc is used widely for the traversal of data. Mesh loop results in direct or indirect data access that affects data locality significantly. By loop on mesh, many threads accessing the same data lead to data dependence. Both data locality and data dependence play an important part in the performance of GPU simulations. For optimizing a GPU-accelerated unstructured finite volume Computational Fluid Dynamics (CFD) program, the performance of hot spots under different loops on cells, faces, and nodes is evaluated on Nvidia Tesla V100 and K80. Numerical tests under different mesh scales show that the effects of mesh loop modes are different on data locality and data dependence. Specifically, face loop makes the best data locality, so long as access to face data exists in kernels. Cell loop brings the smallest overheads due to non-coalescing data access, when both cell and node data are used in computing without face data. Cell loop owns the best performance in the condition that only indirect access of cell data exists in kernels. Atomic operations reduced the performance of kernels largely in K80, which is not obvious on V100. With the suitable mesh loop mode in all kernels, the overall performance of GPU simulations can be increased by 15%-20%. Finally, the program on a single GPU V100 can achieve maximum 21.7 and average 14.1 speed up compared with 28 MPI tasks on two Intel CPUs Xeon Gold 6132.


2020 ◽  
Vol 26 (1) ◽  
Author(s):  
Mohammed S. ElSheemy

Abstract Background Postnatal management of infants with antenatal hydronephrosis (ANH) is still one of the most controversial issues. The majority of infants with ANH are asymptomatic with only few children who develop renal insufficiency. Thus, the biggest challenge for pediatric urologists is to distinguish children who will require further investigations and possible intervention prior to the development of symptoms, complications or renal damage in a cost effective manner without exposing them to the hazards of unnecessary investigations. Main body In this review article, literature on ANH were reviewed to present the current suggestions, recommendations, guidelines and their rational for postnatal management of ANH. It is agreed that a large portion of infants with ANH will improve; thus, the protocol of management is based mainly on observation and follow-up by ultrasound to detect either resolution, stabilization or worsening of hydronephrosis. The first 2 years of life are critical for this follow-up as the final picture is mostly reached during that period. Advanced imaging using voiding cystourethrography or renal scintigraphy are required for children at risk. Then, surgical intervention is selected only for a subgroup of these infants who showed worsening of hydronephrosis or renal function. Conclusions The protocol of management is based mainly on observation and follow-up by US to detect either resolution, stabilization or worsening of hydronephrosis. Postnatal evaluation should be performed for any neonate with a history ANH at any stage during pregnancy even if it was resolved during third trimester. Exclusion of UTI should be performed by urinalysis for all cases followed by urine culture if indicated. Serum creatinine should be performed especially in patients with bilateral ANH. US is the initial standard diagnostic imaging technique. Other imaging modalities like VCUG and nuclear renal scans may be required according to the results of the US evaluation. The most important items in decision making are the presence of bilateral or unilateral hydronephrosis, presence or absence of hydroureter, presence of lower urinary tract obstruction and degree of hydronephrosis on the initial postnatal US. Then an intervention is selected only for a subgroup of these patients who showed deterioration in renal function or degree of hydronephrosis or were complicated by UTIs. All these recommendations are based on the available literature. However, management of ANH is still a controversial issue due to lack of high evidence-based recommendations. Randomised controlled studies are still needed to provide a high level evidence for different aspects of management.


Nutrients ◽  
2021 ◽  
Vol 13 (5) ◽  
pp. 1635
Author(s):  
Sweeny Chauhan ◽  
Alish Kerr ◽  
Brian Keogh ◽  
Stephanie Nolan ◽  
Rory Casey ◽  
...  

The prevalence of prediabetes is rapidly increasing, and this can lead to an increased risk for individuals to develop type 2 diabetes and associated diseases. Therefore, it is necessary to develop nutritional strategies to maintain healthy glucose levels and prevent glucose metabolism dysregulation in the general population. Functional ingredients offer great potential for the prevention of various health conditions, including blood glucose regulation, in a cost-effective manner. Using an artificial intelligence (AI) approach, a functional ingredient, NRT_N0G5IJ, was predicted and produced from Pisum sativum (pea) protein by hydrolysis and then validated. Treatment of human skeletal muscle cells with NRT_N0G5IJ significantly increased glucose uptake, indicating efficacy of this ingredient in vitro. When db/db diabetic mice were treated with NRT_N0G5IJ, we observed a significant reduction in glycated haemoglobin (HbA1c) levels and a concomitant benefit on fasting glucose. A pilot double-blinded, placebo controlled human trial in a population of healthy individuals with elevated HbA1c (5.6% to 6.4%) showed that HbA1c percentage was significantly reduced when NRT_N0G5IJ was supplemented in the diet over a 12-week period. Here, we provide evidence of an AI approach to discovery and demonstrate that a functional ingredient identified using this technology could be used as a supplement to maintain healthy glucose regulation.


Author(s):  
Lorenzo Cotrozzi

AbstractSustainable forest management is essential to confront the detrimental impacts of diseases on forest ecosystems. This review highlights the potential of vegetation spectroscopy in improving the feasibility of assessing forest disturbances induced by diseases in a timely and cost-effective manner. The basic concepts of vegetation spectroscopy and its application in phytopathology are first outlined then the literature on the topic is discussed. Using several optical sensors from leaf to landscape-level, a number of forest diseases characterized by variable pathogenic processes have been detected, identified and quantified in many country sites worldwide. Overall, these reviewed studies have pointed out the green and red regions of the visible spectrum, the red-edge and the early near-infrared as the spectral regions most sensitive to the disease development as they are mostly related to chlorophyll changes and symptom development. Late disease conditions particularly affect the shortwave-infrared region, mostly related to water content. This review also highlights some major issues to be addressed such as the need to explore other major forest diseases and geographic areas, to further develop hyperspectral sensors for early detection and discrimination of forest disturbances, to improve devices for remote sensing, to implement long-term monitoring, and to advance algorithms for exploitation of spectral data. Achieving of these goals will enhance the capability of vegetation spectroscopy in early detection of forest stress and in managing forest diseases.


2001 ◽  
Vol 1 ◽  
pp. 953-957 ◽  
Author(s):  
Stephanie Benkovic ◽  
Joseph Kruger

The use of emissions trading (cap and trade) is gaining worldwide recognition as an extremely effective policy tool. The U.S. Sulfur Dioxide (SO2) Emissions Trading Program has achieved an unprecedented level of environmental protection in a cost-effective manner. The successful results of the program have led domestic and foreign governments to consider the application of cap and trade to address other air quality issues. Certain analyses are particularly important in determining whether or not cap and trade is an appropriate policy tool. This paper offers a set of questions that can be used as criteria for determining whether or not cap and trade is the preferred policy approach to an environmental problem.


1996 ◽  
Vol 76 (1) ◽  
pp. 117-128 ◽  
Author(s):  
Rocco Orlando ◽  
John C. Russell

Sign in / Sign up

Export Citation Format

Share Document