scholarly journals ANALYSIS OF EXISTING METHODS FOR URANIUM-PLUTONIUM MIXED NITRIDE FUEL FAB-RICATION IN RUSSIA AND ABROAD

Author(s):  
Maxim S. Fedorov ◽  
Nikolay A. Baydakov ◽  
Alexander N. Zhiganov ◽  
Dmitry V. Zozulya

This paper presents a review and a brief analysis of existing methods for producing mixed uranium nitride and plutonium, developed by both Russian and foreign scientists. The main parameters of the processes are considered, and their advantages and disadvantages are studied. Currently, the main areas of nitride fuel production are the metal hydride method and carbothermic reduction from the starting oxides. The methods are traditional ceramic technology. The starting products for the manufacture of nitride fuel powder can be either oxides (uranium dioxide and plutonium dioxide) or metals (uranium, plutonium and their alloys). To date, the technology for the manufacture of nitride fuel powder has not been finally selected. When considering existing methods, significant emphasis was placed on industrial applications and the simplicity of the hardware design processes. The laboratory methods are reflected in the work, which make it possible to simplify the process and reduce the costs of obtaining powders of mixed uranium and plutonium nitrides. However, they have significant difficulties in the technological implementation and low productivity of the processes. Of special interest among laboratory methods for producing mixed uranium and plutonium nitrides is the method of high-voltage electric pulse consolidation. This method allows sintering of tablets at the stage of powder pressing from mixed uranium and plutonium nitrides by passing a short high-voltage discharge with a power of several kW directly through the powder.

2021 ◽  
Vol 11 (11) ◽  
pp. 5187
Author(s):  
Fernando Pagels ◽  
Ricardo N. Pereira ◽  
António A. Vicente ◽  
A. Catarina Guedes

Pigments from microalgae and cyanobacteria have attracted great interest for industrial applications due to their bioactive potential and their natural product attributes. These pigments are usually sold as extracts, to overcome purification costs. The extraction of these compounds is based on cell disruption methodologies and chemical solubility of compounds. Different cell disruption methodologies have been used for pigment extraction, such as sonication, homogenization, high-pressure, CO2 supercritical fluid extraction, enzymatic extraction, and some other promising extraction methodologies such as ohmic heating and electric pulse technologies. The biggest constrain on pigment bioprocessing comes from the installation and operation costs; thus, fundamental and applied research are still needed to overcome such constrains and give the microalgae and cyanobacteria industry an opportunity in the world market. In this review, the main extraction methodologies will be discussed, taking into account the advantages and disadvantages for each kind of pigment, type of organism, cost, and final market.


Atomic Energy ◽  
2020 ◽  
Vol 129 (2) ◽  
pp. 103-107
Author(s):  
A. F. Grachev ◽  
L. M. Zabud’ko ◽  
M. V. Skupov ◽  
F. N. Kryukov ◽  
V. G. Teplov ◽  
...  

Sensors ◽  
2021 ◽  
Vol 21 (3) ◽  
pp. 909
Author(s):  
David W. Upton ◽  
Keyur K. Mistry ◽  
Peter J. Mather ◽  
Zaharias D. Zaharis ◽  
Robert C. Atkinson ◽  
...  

The lifespan assessment and maintenance planning of high-voltage power systems requires condition monitoring of all the operational equipment in a specific area. Electrical insulation of electrical apparatuses is prone to failure due to high electrical stresses, and thus it is a critical aspect that needs to be monitored. The ageing process of the electrical insulation in high voltage equipment may accelerate due to the occurrence of partial discharge (PD) that may in turn lead to catastrophic failures if the related defects are left untreated at an initial stage. Therefore, there is a requirement to monitor the PD levels so that an unexpected breakdown of high-voltage equipment is avoided. There are several ways of detecting PD, such as acoustic detection, optical detection, chemical detection, and radiometric detection. This paper focuses on reviewing techniques based on radiometric detection of PD, and more specifically, using received signal strength (RSS) for the localization of faults. This paper explores the advantages and disadvantages of radiometric techniques and presents an overview of a radiometric PD detection technique that uses a transistor reset integrator (TRI)-based wireless sensor network (WSN).


2013 ◽  
Vol 845 ◽  
pp. 283-286 ◽  
Author(s):  
Malik Abdul Razzaq Al Saedi ◽  
Mohd Muhridza Yaacob

There is a high risk of insulation system dielectric instability when partial discharge (PD) occurs. Therefore, measurement and monitoring of PD is an important preventive tool to safeguard high-voltage equipment from wanton damage. PD can be detected using optical method to increase the detection threshold and to improve the performance of on-line measurement of PD in noise environment. The PD emitted energy as acoustic emission. We can use this emitted energy to detect PD signal. The best method to detect PD in power transformer is by using acoustic emission. Optical sensor has some advantages such as; high sensitivity, more accuracy small size. Furthermore, in on-site measurements and laboratory experiments, it isoptical methodthat gives very moderate signal attenuations. This paper reviews the available PD detection methods (involving high voltage equipment) such as; acoustic detection and optical detection. The advantages and disadvantages of each method have been explored and compared. The review suggests that optical detection techniques provide many advantages from the consideration of accuracy and suitability for the applications when compared to other techniques.


Author(s):  
John Hartranft ◽  
Bruce Thompson ◽  
Dan Groghan

Following the successful development of aircraft jet engines during World War II (WWII), the United States Navy began exploring the advantages of gas turbine engines for ship and boat propulsion. Early development soon focused on aircraft derivative (aero derivative) gas turbines for use in the United States Navy (USN) Fleet rather than engines developed specifically for marine and industrial applications due to poor results from a few of the early marine and industrial developments. Some of the new commercial jet engine powered aircraft that had emerged at the time were the Boeing 707 and the Douglas DC-8. It was from these early aircraft engine successes (both commercial and military) that engine cores such as the JT4-FT4 and others became available for USN ship and boat programs. The task of adapting the jet engine to the marine environment turned out to be a substantial task because USN ships were operated in a completely different environment than that of aircraft which caused different forms of turbine corrosion than that seen in aircraft jet engines. Furthermore, shipboard engines were expected to perform tens of thousands of hours before overhaul compared with a few thousand hours mean time between overhaul usually experienced in aircraft applications. To address the concerns of shipboard applications, standards were created for marine gas turbine shipboard qualification and installation. One of those standards was the development of a USN Standard Day for gas turbines. This paper addresses the topic of a Navy Standard Day as it relates to the introduction of marine gas turbines into the United States Navy Fleet and why it differs from other rating approaches. Lastly, this paper will address examples of issues encountered with early requirements and whether current requirements for the Navy Standard Day should be changed. Concerning other rating approaches, the paper will also address the issue of using an International Organization for Standardization, that is, an International Standard Day. It is important to address an ISO STD DAY because many original equipment manufacturers and commercial operators prefer to rate their aero derivative gas turbines based on an ISO STD DAY with no losses. The argument is that the ISO approach fully utilizes the power capability of the engine. This paper will discuss the advantages and disadvantages of the ISO STD DAY approach and how the USN STD DAY approach has benefitted the USN. For the future, with the advance of engine controllers and electronics, utilizing some of the features of an ISO STD DAY approach may be possible while maintaining the advantages of the USN STD DAY.


Author(s):  
S N Nikitin ◽  
D P Shornikov ◽  
B A Tarasov ◽  
V G Baranov ◽  
M A Burlakova

2019 ◽  
Vol 193 (11) ◽  
pp. 1255-1264
Author(s):  
Klara Insulander Björk ◽  
Aneta Herman ◽  
Marcus Hedberg ◽  
Christian Ekberg

Author(s):  
Mansouri Ali ◽  
Msaddek Hejra ◽  
Trabelsi Hafedh

<table border="1" cellspacing="0" cellpadding="0" width="593"><tbody><tr><td width="387" valign="top"><p>In recent years, permanent magnet machines have become a common choice in many industrial applications. Therefore, several structures have been developed, and the choice of a topology designed for a specified application requires the knowledge of the advantages and disadvantages of different topologies. The present work deals with the evaluation of the performances of different radial flux surface-mounted permanent magnet motors designed for an electric vehicle motor application. The objective of this survey is to show the effect of the rotor position (inner or outer) and the magnets segmentation on the machine output torque and iron losses. In this context, four machines with: (i) inner rotor, (ii) inner rotor segmented magnets, (iii) outer rotor and (iv) outer rotor segmented magnets have been designed and studied. All these machines have the same geometrical dimensions and current loading. The main idea is to develop a machine with smoothness torque, lower torque ondulation, lower iron losses, and which is mechanically robust. Firstly, the output torque of the different structure is computed. Secondly, by means of an improved analytical model coupled with 2 dimensional transient finite element analysis (FEA), the machines iron losses are predicted.</p></td></tr></tbody></table>


2013 ◽  
Vol 64 (4) ◽  
Author(s):  
Hashem Ahmadi ◽  
Muhammad Abu Bakar Sidik ◽  
Mehrdad Khamooshi ◽  
Zulkafle Buntat

In the last three decades, pulsed high voltage discharge technology has offered promising techniques for the treatment of wastewaters released to the environment by industry. A significant effort has been directed towards understanding the processes that occur during the discharge of solutions for a variety of reactor configurations. This review presents the disadvantages and advantages of different reactors based on discharge phase. Detailed information is also provided on the principals used in each technique and the advantages and disadvantages associated with each method. Finally, a discussion on the different discharge areas is presented.


Sign in / Sign up

Export Citation Format

Share Document