The United States Navy “Standard Day” for Marine Gas Turbines

Author(s):  
John Hartranft ◽  
Bruce Thompson ◽  
Dan Groghan

Following the successful development of aircraft jet engines during World War II (WWII), the United States Navy began exploring the advantages of gas turbine engines for ship and boat propulsion. Early development soon focused on aircraft derivative (aero derivative) gas turbines for use in the United States Navy (USN) Fleet rather than engines developed specifically for marine and industrial applications due to poor results from a few of the early marine and industrial developments. Some of the new commercial jet engine powered aircraft that had emerged at the time were the Boeing 707 and the Douglas DC-8. It was from these early aircraft engine successes (both commercial and military) that engine cores such as the JT4-FT4 and others became available for USN ship and boat programs. The task of adapting the jet engine to the marine environment turned out to be a substantial task because USN ships were operated in a completely different environment than that of aircraft which caused different forms of turbine corrosion than that seen in aircraft jet engines. Furthermore, shipboard engines were expected to perform tens of thousands of hours before overhaul compared with a few thousand hours mean time between overhaul usually experienced in aircraft applications. To address the concerns of shipboard applications, standards were created for marine gas turbine shipboard qualification and installation. One of those standards was the development of a USN Standard Day for gas turbines. This paper addresses the topic of a Navy Standard Day as it relates to the introduction of marine gas turbines into the United States Navy Fleet and why it differs from other rating approaches. Lastly, this paper will address examples of issues encountered with early requirements and whether current requirements for the Navy Standard Day should be changed. Concerning other rating approaches, the paper will also address the issue of using an International Organization for Standardization, that is, an International Standard Day. It is important to address an ISO STD DAY because many original equipment manufacturers and commercial operators prefer to rate their aero derivative gas turbines based on an ISO STD DAY with no losses. The argument is that the ISO approach fully utilizes the power capability of the engine. This paper will discuss the advantages and disadvantages of the ISO STD DAY approach and how the USN STD DAY approach has benefitted the USN. For the future, with the advance of engine controllers and electronics, utilizing some of the features of an ISO STD DAY approach may be possible while maintaining the advantages of the USN STD DAY.

2021 ◽  
Author(s):  
Jeffrey S. Patterson ◽  
Kevin Fauvell ◽  
Dennis Russom ◽  
Willie A. Durosseau ◽  
Phyllis Petronello ◽  
...  

Abstract The United States Navy (USN) 501-K Series Radiological Controls (RADCON) Program was launched in late 2011, in response to the extensive damage caused by participation in Operation Tomodachi. The purpose of this operation was to provide humanitarian relief aid to Japan following a 9.0 magnitude earthquake that struck 231 miles northeast of Tokyo, on the afternoon of March 11, 2011. The earthquake caused a tsunami with 30 foot waves that damaged several nuclear reactors in the area. It was the fourth largest earthquake on record (since 1900) and the largest to hit Japan. On March 12, 2011, the United States Government launched Operation Tomodachi. In all, a total of 24,000 troops, 189 aircraft, 24 naval ships, supported this relief effort, at a cost in excess of $90.0 million. The U.S. Navy provided material support, personnel movement, search and rescue missions and damage surveys. During the operation, 11 gas turbine powered U.S. warships operated within the radioactive plume. As a result, numerous gas turbine engines ingested radiological contaminants and needed to be decontaminated, cleaned, repaired and returned to the Fleet. During the past eight years, the USN has been very proactive and vigilant with their RADCON efforts, and as of the end of calendar year 2019, have successfully completed the 501-K Series portion of the RADCON program. This paper will update an earlier ASME paper that was written on this subject (GT2015-42057) and will summarize the U.S. Navy’s 501-K Series RADCON effort. Included in this discussion will be a summary of the background of Operation Tomodachi, including a discussion of the affected hulls and related gas turbine equipment. In addition, a discussion of the radiological contamination caused by the disaster will be covered and the resultant effect to and the response by the Marine Gas Turbine Program. Furthermore, the authors will discuss what the USN did to remediate the RADCON situation, what means were employed to select a vendor and to set up a RADCON cleaning facility in the United States. And finally, the authors will discuss the dispensation of the 501-K Series RADCON assets that were not returned to service, which include the 501-K17 gas turbine engine, as well as the 250-KS4 gas turbine engine starter. The paper will conclude with a discussion of the results and lessons learned of the program and discuss how the USN was able to process all of their 501-K34 RADCON affected gas turbine engines and return them back to the Fleet in a timely manner.


Author(s):  
Matthew Driscoll ◽  
Thomas Habib ◽  
William Arseneau

The United States Navy uses the General Electric LM2500 gas turbine engine for main propulsion on its newest surface combatants including the OLIVER HAZARD PERRY (FFG 7) class frigates, SPRUANCE (DD 963) class destroyers, TICONDEROGA (CG 47) class cruisers, ARLIEGH BURKE (DDG 51) class destroyers and SUPPLY (AOE 6) class oilers. Currently, the Navy operates a fleet of over 400 LM2500 gas turbine engines. This paper discusses the ongoing efforts to characterize the availability of the engines aboard ship and pinpoint systems/components that have significant impact on engine reliability. In addition, the program plan to upgrade the LM2500’s standard configuration to improve reliability is delineated.


Author(s):  
Robert P. Nufrio ◽  
James McNamara

Significant U.S. Navy controlled land based testing has been successfully conducted on gas turbines and gas turbine main propulsion systems since the early 1950’s. Through the success of these tested systems, largely as a result of successful land based testing, the demand for gas turbine powered main propulsion systems has been steadily increasing. Consequently, gas turbine technology, its applications, and required test capabilities are constantly being developed to meet future U.S. Navy requirements.


Author(s):  
Karen A. Walder ◽  
Steven D’Alessio

Demand for power in the United States is projected to increase between 2 and 4 percent per year for the next 10 years based on various studies. At the same time, the rise in environmental regulatory restrictions has made it increasingly difficult and expensive for utilities to meet these growing power demands with traditional power sources. During the 1960’s and 70’s hundreds of gas turbine electric generating units were installed in the United States. Many are now approaching the end of their useful economic lives owing to increased maintenance and fuel costs. With the major advances in both fuel efficiency and exhaust gas emission quality power producers are looking toward the repowering of existing plants with modern gas turbines such as the FT8. (Day and Koehler, 1988) This paper describes the design of Turbo Power and Marine Systems’ (Turbo Power) FT8® repowering package for the present FT4 powered plant at Public Service Electric and Gas Company’s (PSE&G) Burlington Generating Station. Given the objectives of minimum design effort and minimum field construction time, the retrofit package provides an optimal blending of existing FT4 and standard FT8 equipment. Performance, impact on operation, reliability, and availability of the FT8 industrial gas turbine were also important considerations in the retrofit design.


Author(s):  
Justin Zachary

Since 1998, the United States has experienced a tremendous increase in power generation projects using gas turbine technology. By burning natural gas as the primary fuel and low sulfur oil as a back-up fuel, gas turbines are the cleanest form of fossil power generation.


1955 ◽  
Vol 59 (530) ◽  
pp. 127-150 ◽  
Author(s):  
J. L. Edwards

Some five years ago the author was privileged to deliver a Section Lecture to the Royal Aeronautical Society on the subject of reheat. The present paper attempts to summarise the problems which now arise and to give some idea of the progress which has been made in the intervening years.In 1949, reheat was in its infancy in Great Britain. A certain amount of progress had been made in the United States but the information from that source was scanty and vague. Tests at the National Gas Turbine Establishment (N.G.T.E.) had given some engine data but this was in the nature of preliminary information only and was by no means complete. In fact the majority of the problems which now beset us were then completely unknown or were considered unimportant. The N.G.T.E. work was valuable, however, in that it demonstrated the practicability of reheat, although at the time the comments of many who saw this and other schemes in operation were somewhat sceptical and definitely unflattering.


Author(s):  
Matthew J. Driscoll ◽  
Eric M. McFetridge ◽  
Jeffrey S. Patterson ◽  
Craig A. See

The United States (US) Navy has operated the General Electric LM2500 gas turbine on all its surface combatants for the past 35 years. The LM2500 is utilized as the propulsion engine aboard the US Navy’s newest surface combatants including the FFG 7, CG 47 and DDG 51 Class ships. The US Navy owns and operates 400 LM2500 engines. An on-condition maintenance philosophy is employed whereby engines are run-to-failure rather than removed from service upon achieving some operating milestone. This paper assesses the reasons for the removal of the US Navy’s LM2500s over their entire service life with a focus on how fleet maintenance capabilities have impacted and affected the cause for engine replacements over time.


Author(s):  
Blace C. Albert ◽  
A. O¨zer Arnas

The mission of the United States Military Academy (USMA) is “To educate, train, and inspire the Corps of Cadets so that each graduate is a commissioned leader of character committed to the values of Duty, Honor, Country; professional growth throughout a career as an officer in the United States Army; and a lifetime of selfless service to the nation.” [1] In order to accomplish this mission, USMA puts their cadets through a 47-month program that includes a variety of military training, and college courses totaling about 150 credit-hours. Upon completion of the program, cadets receive a Bachelor of Science degree and become Second Lieutenants in the United States Army. A very unique aspect of the academic program at USMA is that each cadet is required to take a minimum of five engineering classes regardless of their major or field of study. This means that about 500 cadets will have taken the one-semester course in thermodynamics. The thermodynamics course taught at USMA is different from others throughout the country because within every class there is a mixture of cadets majoring in engineering and those that are in other majors, i.e. languages, history [2]. Topics on gas turbine machinery have been integrated into this unique thermodynamics course. Because the cadets will encounter gas turbines throughout their service in the Army, we feel that it is important for all of the students, not just engineering majors, to learn about gas turbines, their operation, and their applications. This is accomplished by four methods. The first is in a classroom environment. Cadets learn how actual gas turbines work, how to model them, and learn how to solve problems. Thermodynamics instructors have access to several actual gas turbines used in military applications to aid in cadet learning. The second method occurs in the laboratory where cadets take measurements and analyze an operational auxiliary power unit (APU) from an Army helicopter. The third method occurs in the form of a design project. The engineering majors redesign the cogeneration plant that exists here at West Point. Many of them use a topping cycle in this design. The final method is a capstone design project. During the 2001–02 academic year, three cadets are improving the thermodynamic laboratories. Among their tasks are designing a new test stand for the APU, increasing the benefit of the gas turbine laboratory through more student interaction, and designing a web-based gas turbine pre-laboratory instruction to compliment the actual laboratory exercise.


Author(s):  
John S. Siemietkowski ◽  
Walter S. Williams

The General Electric LM2500 Marine Gas Turbine, currently used by the United States Navy as main propulsion on various classes of ships, lends itself very easily to a procedure known as photoborescopy. Photoborescopy is that process where discrete, color photographs are taken of various internal parts of the engine. Borescoping in itself is not new, but maximizing the borescopes capabilities is a program that the U.S. Navy continuously is developing at the Naval Ship Systems Engineering Station (NAVSSES) in Philadelphia, Pennsylvania. This paper will describe the photoborescopy technique used by NAVSSES and also give and show graphically the Fleet experience with two LM2500’s which had accumulated 10,000 hours of successful at-sea operation. The opinions expressed herein are those of the author and not necessarily of the Department of Defense or the Navy Department.


Author(s):  
Jeffrey S. Patterson ◽  
Kevin D. Fauvell ◽  
Jay McMahon ◽  
Javier O. Moralez

On the afternoon of March 11, 2011 at 2:46pm, a 9.0 magnitude earthquake took place 231 miles northeast of Tokyo, Japan, at a depth of 15.2 miles. The earthquake caused a tsunami with 30 foot waves that damaged several nuclear reactors in the area. It was the fourth largest earthquake on record (since 1900) and the largest to hit Japan. On March 12, 2011, the United States Government launched Operation Tomodachi to provide humanitarian relief aid to Japan. In all, a total of 24,000 troops, 189 aircraft, 24 naval ships, supported this relief effort, at a cost of $90.0 million. The U.S. Navy provided material support, personnel movement, search and rescue missions and damage surveys. During the operation, 11 gas turbine U.S. warships operated within the radioactive plume. As a result, numerous gas turbine engines ingested radiological contaminants and are now operating under Radiological Controls (RADCON). This paper will describe the events that lead to Operation Tomodachi, as well as the resultant efforts on the U.S. Navy’s Japanese based gas turbine fleet. In addition, this paper will outline the U.S. Navy’s effort to decontaminate, overhaul and return these RADCON assets back into the fleet.


Sign in / Sign up

Export Citation Format

Share Document