scholarly journals PREPARATION OF COMPOSITE MATERIALS BASED ON COBALT (II) FERRITE FOR PURIFICATION OF AQUEOUS SOLUTIONS

Author(s):  
Nina P. Shabelskaya ◽  
Marina A. Egorova ◽  
Anna V. Arzumanova ◽  
Elena A. Yakovenko ◽  
Vladimir M. Zababurin ◽  
...  

In this paper, composite materials based on cobalt (II) ferrite, which is a promising object of research as a magnetic material, are obtained. Thus, it is known to be used for producing organo / inorganic and non-organo/inorganic compositions. The introduction of cobalt ferrite makes it possible to give new properties to carrier materials. As a carrier, waste from the production of phosphoric acid – phosphogypsum, ash – and – slag waste from thermal power stations and cullet-foam glass, and activated carbon were used. Finding a way to process waste to produce new composite materials is an urgent task of chemical technology. The obtained samples were studied using X-ray phase analysis and electron microscopy. In the course of the conducted research, the principal possibility of using the specified number of production wastes for the synthesis of catalytically active materials is shown. Photocatalytic reactions are widely used in water treatment processes for wastewater treatment from organic pollutants. A simple method for obtaining composite materials of the composition of foam glass/ cobalt ferrite (II), phosphogypsum/ cobalt ferrite (II), activated carbon/ cobalt ferrite (II) is proposed. The catalytic properties of synthesized materials in the process of oxidative destruction of an organic dye in the presence of hydrogen peroxide are studied. It was found that the highest activity under the specified conditions is observed for the activated carbon/ cobalt (II) ferrite composite: complete removal of the organic dye from the aqueous solution is achieved after 90 min from the beginning of the reaction. The phosphogypsum-based composite shows the least pronounced activity. The results obtained can serve as a guide for choosing a method for producing non-toxic materials that are promising for use in water treatment systems and ensuring environmental safety of industrial enterprises that use organic dyes in the production process.

RSC Advances ◽  
2020 ◽  
Vol 10 (54) ◽  
pp. 32845-32855 ◽  
Author(s):  
Abbasali Mokhtari Andani ◽  
Tayebeh Tabatabaie ◽  
Saeed Farhadi ◽  
Bahman Ramavandi

A magnetically separable MIL-101(Cr)/CoFe2O4 binary nanocomposite was prepared via a hydrothermal route and applied as a sonocatalyst for the efficient degradation of organic dyes.


2021 ◽  
Vol 23 ◽  
pp. 11-19
Author(s):  
I. Uriadnikova

Introduction. Currently, the most important issues in the national economy are the issues of continuous, reliable and safe operation of circulating water supply systems, namely power units of thermal power plants and thermal power plants of industrial enterprises. Faultless and reliable operation of water supply systems ensures the normal operation of social and industrial enterprises, as well as the safe operation of fire protection systems, which can be disrupted by stopping the supply of quality products to the consumer. In Ukraine and abroad, this issue is devoted to many scientific papers on the assessment, calculation and management of man-made risks, the calculation and management of risks in water treatment systems in heat and energy. But the impact of these risks on environmental safety is not covered, while the issue is of great economic importance. However, the influence of these risks on environmental protection is not covered, while the problem is of great economic importance. There is no general methodological approach that considers the diversity of water treatment systems and their design solutions. There is no clear ranking of objects to be protected by risk analysis, and there is no analysis of the effects acting on them.Purpose and methods. The purpose of the work is to determine the risks associated with the patterns of the probability of failure of units, the patterns of transition from state to state and the risks associated with changes in patterns when replacing the blocks of the water treatment system or its elements. To study the probability of risks as a result of failures for the entire period of operation of the water treatment system in the heating industry, a structural and functional block diagram of the water treatment system is built. To obtain numerical data on the failure probability at any time, the failure probability curve was approximated by the curves of the law of normal distribution (Gaussian curves).Results and discussion. Studies have shown that the minimum risk is proportional to the minimum probability of failure. Then it will be fair to say that to minimize the risk, it is necessary to reduce the failure probability function on the part of the failure curve that corresponds to the operating state of the unit or element, that is on the plot or in the normal operation. To calculate the minimum probability of risk, it is necessary to determine the minimum of this function. Since failure is a function of many variables, thus Rfail = f (x, y, z) → 0. It is also established that for most water treatment systems at any time of operation it is possible to determine the risks associated with the regularities of failure probabilities of units, with regularities the transition of the system from state to state and the risks associated with changes in the above patterns when replacing the blocks of the water treatment system or its elements.Conclusions. As a result of the conducted researches, it is received that at long enough work of water treatment system it is necessary to establish in it a probabilistic constant mode of transition from a condition to a condition according to the scheme "working condition of all blocks - failure of one or several blocks - repair - working condition of all blocks". The probabilities of the sequence and duration of these events are determinable, which makes it possible on the one hand to assess the risks arising from the operation and to determine a management strategy to minimize these risks. The probability of failure rate intensity and possible changes in this probability during the operation of the water treatment system depending on the time interval on the failure curve on which the operation of this system is considered. Determining this probability makes it possible to predict risks throughout the periods of operation of systems and take measures to minimize them.


Author(s):  
V. I. Minina ◽  
Yu. A. Nelyubova ◽  
Ya. A. Savchenko ◽  
A. A. Timofeeva ◽  
Ye. A. Astafieva ◽  
...  

Introduction. Coal heat power stations are characterized by severe hazardous eff ect of occupational environment on workers. Objective. To analyze chromosomal disorders in workers of thermal power plant working on coal from Kuznetsk coal fi eld (West Siberia). Materials and methods. Th e authors studied level and specter of chromosomal aberrations in blood lymphocytes of 185 workers of Kemerovo thermal power plant and 218 inhabitants of the same location, not working on industrial enterprises (Kemerovo, Russia). For every individual, average number of 200 metaphase plates of high quality was analyzed. Results. Findings are that the workers of thermal power plant have levels of chromosomal aberrations signifi cantly higher than those of reference group (3,01±0,13% vs. 1,45±0,08%; р<0,00001). With that, increased frequency is seen both for chromatid aberrations and for chromosomal ones — that indicates complex exposure to chemical and radiation factors. Conclusions. Th e results obtained necessitate elaboration of measures to decrease genotoxic hazards in the occupational environment.


2012 ◽  
Vol 40 (4) ◽  
pp. 1025-1037
Author(s):  
Mahmoud Bady ◽  
Hassanien Manaa ◽  
Adel M. Kamal El- Dean ◽  
A. M Hussein

2002 ◽  
Vol 2 (1) ◽  
pp. 233-240 ◽  
Author(s):  
J. Cromphout ◽  
W. Rougge

In Harelbeke a Water Treatment Plant with a capacity of 15,000 m3/day, using Schelde river water has been in operation since April 1995. The treatment process comprises nitrification, dephosphatation by direct filtration, storage into a reservoir, direct filtration, granular activated carbon filtration and disinfection. The design of the three-layer direct filters was based on pilot experiments. The performance of the plant during the five years of operation is discussed. It was found that the removal of atrazin by activated carbon depends on the water temperature.


1992 ◽  
Vol 26 (5-6) ◽  
pp. 1255-1264
Author(s):  
K. L. Martins

During treatment of groundwater, radon is often coincidentally removed by processes typically used to remove volatile organic compounds (VOCs)-for example, processes such as liquid-phase granular activated carbon (LGAC) adsorption and air stripping with vapor-phase carbon (VGAC). The removal of radon from drinking water is a positive benefit for the water user; however, the accumulation of radon on activated carbon may cause radiologic hazards for the water treatment plant operators and the spent carbon may be considered a low-level radioactive waste. To date, most literature on radon removal by water treatment processes was based on bench- or residential-scale systems. This paper addresses the impact of radon on municipal and industrial-scale applications. Available data have been used todevelop graphical methods of estimating the radioactivity exposure rates to facility operators and determine the fate of spent carbon. This paper will allow the reader to determine the potential for impact of radon on the system design and operation as follows.Estimate the percent removal of radon from water by LGAC adsorbers and packed tower air strippers. Also, a method to estimate the percent removal of radon by VGAC used for air stripper off-gas will be provided.Estimate if your local radon levels are such that the safety guidelines, suggested by USEPA (United States Environmental Protection Agency), of 25 mR/yr (0.1 mR/day) for radioactivity exposure may or may not be exceeded.Estimate the disposal requirements of the waste carbon for LGAC systems and VGAC for air stripper “Off-Gas” systems. Options for dealing with high radon levels are presented.


Author(s):  
Hongsik Yoon ◽  
Jiho Lee ◽  
Taijin Min ◽  
Gunhee Lee ◽  
Minsub Oh

Capacitive deionization (CDI) has been highlighted as a promising electrochemical water treatment system. However, the low deionization capacity of CDI electrodes has been a major limitation for its industrial application,...


Author(s):  
O.J.I. Kramer ◽  
C. van Schaik ◽  
P.D.R. Dacomba-Torres ◽  
P.J. de Moel ◽  
E.S. Boek ◽  
...  

2021 ◽  
Vol 773 ◽  
pp. 145110
Author(s):  
Samylla Oliveira ◽  
Allan Clemente ◽  
Indira Menezes ◽  
Amanda Gois ◽  
Ismael Carloto ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document