scholarly journals Influence of Tunneling Current on Threshold voltage Shift by Channel Length for Asymmetric Double Gate MOSFET

Author(s):  
Hakkee Jung
Author(s):  
Hakkee Jung

Threshold voltage roll-off is analyzed for sub-10 nm asymmetric double gate (DG) MOSFET. Even asymmetric DGMOSFET will increase threshold voltage roll-off in sub-10 nm channel length because of short channel effects due to the increase of tunneling current, and this is an obstacle against the miniaturization of asymmetric DGMOSFET. Since asymmetric DGMOSFET can be produced differently in top and bottom oxide thickness, top and bottom oxide thicknesses will affect the threshold voltage roll-off. To analyze this, <em>thermal</em><em> </em>emission current and tunneling current have been calculated, and threshold voltage roll-off by the reduction of channel length has been analyzed by using channel thickness and top/bottom oxide thickness as parameters. As a result, it is found that, in short channel asymmetric double gate MOSFET, threshold voltage roll-off is changed greatly according to top/bottom gate oxide thickness, and that threshold voltage roll-off is more influenced by silicon thickness. In addition, it is found that top and bottom oxide thickness have a relation of inverse proportion mutually for maintaining identical threshold voltage. Therefore, it is possible to reduce the leakage current of the top gate related with threshold voltage by increasing the thickness of the top gate oxide while maintaining the same threshold voltage.


2016 ◽  
Vol 12 (9) ◽  
pp. 892-897 ◽  
Author(s):  
Bong-Hyun You ◽  
Soo-Yeon Lee ◽  
Seok-Ha Hong ◽  
Jae-Hoon Lee ◽  
Hyun-Chang Kim ◽  
...  

Micromachines ◽  
2021 ◽  
Vol 12 (3) ◽  
pp. 327
Author(s):  
Je-Hyuk Kim ◽  
Jun Tae Jang ◽  
Jong-Ho Bae ◽  
Sung-Jin Choi ◽  
Dong Myong Kim ◽  
...  

In this study, we analyzed the threshold voltage shift characteristics of bottom-gate amorphous indium-gallium-zinc-oxide (IGZO) thin-film transistors (TFTs) under a wide range of positive stress voltages. We investigated four mechanisms: electron trapping at the gate insulator layer by a vertical electric field, electron trapping at the drain-side GI layer by hot-carrier injection, hole trapping at the source-side etch-stop layer by impact ionization, and donor-like state creation in the drain-side IGZO layer by a lateral electric field. To accurately analyze each mechanism, the local threshold voltages of the source and drain sides were measured by forward and reverse read-out. By using contour maps of the threshold voltage shift, we investigated which mechanism was dominant in various gate and drain stress voltage pairs. In addition, we investigated the effect of the oxygen content of the IGZO layer on the positive stress-induced threshold voltage shift. For oxygen-rich devices and oxygen-poor devices, the threshold voltage shift as well as the change in the density of states were analyzed.


Sign in / Sign up

Export Citation Format

Share Document